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Iterative Methods

Qx(k) = (Q−A)x(k−1) + b, k = 1, 2, 3, · · ·

• Richardson Q = I

• Jacobi Q = D(A)

• G-S Q = D − L

• SOR Q = 1
ω (D − ωL)
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Relaxation Methods

Qz(k) = (Q−A)x(k−1) + b

x(k) = ωz(k) + (1− ω)x(k−1)

or
x(k) = ω[(I −Q−1A)x(k−1) +Q−1b] + (1− ω)x(k−1)
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Convergence

x(k) = Gx(k−1) + c, k = 1, 2, 3, · · · (1)

Theorem 1
The iteration (1) converges to (I −G)−1c if and only if ρ(G) < 1.
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SOR

Theorem 2
The SOR method fails to converge if ω ≤ 0 or ω ≥ 2.

Proof: As per SOR method,

(D − ωL)x(k) = ((1− ω)D + ωU)x(k−1) + ωb

=⇒ x(k) = (D − ωL)−1
[
((1− ω)D + ωU)x(k−1) + ωb

]
Hence

G = (D − ωL)−1((1− ω)D + ωU)
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SOR
Let {λi} denote the eigenvalues of the SOR iteration matrix, then∣∣∣∣∣

n∏
i=1

λi

∣∣∣∣∣ = | det[(D − ωL)−1((1− ω)D + ωU)]|

= | det[(D − ωL)−1||det((1− ω)D + ωU)]|
= | det(D−1)||1− ω|n|det(D)|
= |1− ω|n

Hence, at least one eigenvalue λi must exist such that |λi| ≥ |1− ω| and thus
in order for convergence to hold. Therefore, we must have

|1− ω| < 1 =⇒ 0 < ω < 2
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Exercise

Exercise 1: Easy

Assume that A = (aij) is symmetric and positive definite
1. Prove that A can be written as A = D − L− LT

2. Prove that aii > 0 for all i
3. Prove that L is lower triangular and (D − ωL) is nonsingular
4. Let G = (D − ωL)−1[(1− ω)D + ωLT ] and P = A−GTAG. Prove

that P is symmetric.
5. Show that G = I − ω(D − ωL)−1A

6. Let S = ω(D − ωL)−1A then G = I − S and
P = ST [AS−1 −A+ S−TA]S

7. Show that P =
(
2
ω − 1

)
STDS and P is positive definite if

0 < ω < 2. 7



Hint for Exercise

• For symmetric, we have A = D − L− LT

• If A is positive definite, then all its diagonal entries are positive. For, take
x = ei, xTAx = aii > 0. Therefore, D is positive definite.

• It is obvious that D − ωL is lower triangular and nonsingular.
• P T = (A−GTAG)T = AT − (GTAG)T = A−GTAT (GT )T =

A−GTAG = P

• G = (D−ωL)−1[D−ωD+ωL−ωL+ωLT ] = (D−ωL)−1[(D−ωL)+ωA]
= I − ω(D − ωL)−1A

• G = I − S is obvious. Now
GTAG = (I−S)TA(I−S) = (A−STA)(I−S) = A−AS−STA+STAS
ST [AS−1 −A+ S−TA]S = [STAS−1 − STA+ STS−TA]S
= STAS−1S − STAS +AS = STA− STAS +AS = A−GTAG = P
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Hint for Exercise

• For P = STDS, it is sufficient to prove that
AS−1 −A+ S−TA =

(
2
ω − 1

)
D.

S−1 = 1
ωA

−1(D − ωL) =⇒ AS−1 = 1
ω (D − ωL)

S−T = 1
ω (D − ωL)TA−T = 1

ω (D − ωLT )A−1 =⇒ S−TA = 1
ω (D − ωLT )

AS−1−A+S−TA = 1
ω (D−ωL)−D+L+LT + 1

ω (D−ωLT ) =
(
2
ω − 1

)
D

• We have already proved that D is positive definite, the proof of P follows.

9



Exercise

Exercise 2: Easy

Assume that A = (aij) is symmetric and positive definite
1. Prove that L is lower triangular and (D − L) is nonsingular
2. Let G = (D − L)−1LT and P = A−GTAG. Prove that P is

symmetric.
3. Show that G = I − (D − L)−1A

4. Let S = (D − L)−1A then G = I − S and
P = ST [AS−1 −A+ S−TA]S

5. Show that P = STDS and P is positive definite.

Hint: Use ω = 1 in previous exercises.
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SOR

Theorem 3
If A is symmetric, positive definite matrix and 0 < ω < 2, then the SOR method
converges for any starting vector x(0).

Proof: Let
Q =

1

ω
(D − ωL) =⇒ G = I −Q−1A

Claim: ρ(G) = ρ(I −Q−1A) < 1.

A−GTAG = A− (I −Q−1A)TA(I −Q−1A)

= A− (I −Q−1A)T (A−AQ−1A)

= A−A+ (Q−1A)TA+AQ−1A− (Q−1A)TAQ−1A

= (Q−1A)TQTQ−1A+ATQ−TQQ−1A− (Q−1A)TAQ−1A

= (Q−1A)T [QT +Q−A]Q−1A
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SOR
Now,

QT +Q−A =
1

ω
(D − ωL)T +

1

ω
(D − ωL)−A

=
2

ω
D − LT − L−D + L+ LT =

1

ω
(2− ω)D

Since 0 < ω < 2, this proves that QT +Q−A is symmetric positive definite.
Therefore, P = A−GTAG is symmetric positive definite (SPD). Let λ ∈ C be
any eigenvalue of I −Q−1A and x ∈ Cn and x ̸= 0 be corresponding
eigenvector. Then

x∗Ax > x∗(I −Q−1A)TA(I −Q−1A) = (λx)∗A(λx) = |λ|2x∗Ax

=⇒ |λ|2 < 1

Therefore, ρ(I −Q−1A) < 1. Hence the proof. 12



SOR

Theorem 4
If A is symmetric, positive definite matrix, then the Gauss-Seidel method con-
verges for any starting vector x(0).

Proof: Use ω = 1 and proceed as above.
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Krylov Subspace
Methods
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Krylov Subspace Methods
Our aim is to solve Ax = b

• Krylov Subspace methods are a family of algorithm to solve the linear
system.

• We need to search for an approximate solution from a Krylov subspace.
• Krylov subspace methods are again iterative methods which involves

mostly matrix-vector product.
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Krylov Subspace Methods

• Most popular Krylov subspace methods are
1. Arnoldi
2. Lanczos
3. Conjugate Gradient
4. BiCGSTAB
5. GMRES
6. MINRES
7. SYMMLQ
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Krylov Subspace Methods
Let A be an invertible matrix. Let us consider the sequence of vectors

b, Ab,A2b, · · · , An−1b, Anb, · · · ,

Consider the first n+ 1, Krylov matrix

b, Ab,A2b, · · · , An−1b, Anb

then these set become n+ 1 linearly dependent vectors of a n-dimensional
space. Therefore, there exist coefficients α0, α1, · · · , αn such that

n∑
j=0

αjA
jb = 0

All combinations of the Krylov matrix form a subspace which is called Krylov
subspace (Kj). 17



Krylov Subspace Methods
Let k be the least integer such that αk ̸= 0. Since A−1 exists

=⇒ A−1b = − 1

αk

n∑
j=k+1

αjA
(j−k−1)

We need to choose the best linear combinations as our improved xj . Four
different approaches to choose a good xj leads to important decision
1. rj = b−Axj is orthogonal to Kj : Conjugate Gradient
2. rj = b−Axj is orthogonal to Kj(A

T ): BiCGSTAB
3. rj = b−Axj has minimum norm for xj in Kj : GMRES and MINRES
4. The error ej has minimum norm: SYMMLQ
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Conjugate Gradient
Method
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Conjugate Gradient Method

• One of most popular iterative methods for solving sparse system of
linear equations

• Applicable for symmetric matrices A.

Definition 5 (Inner Product)
The inner product of two vectors

u = (u1, u2, · · · , un), v = (v1, v2, · · · , vn)

is defined as

⟨u, v⟩ = uT v =
n∑

i=0

uivi
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Conjugate Gradient Method

Definition 6 (Orthogonal)
If u and v are mutually orthogonal, then

⟨u, v⟩ = 0

Definition 7 (A-Inner Product)
The A-inner product of two vectors

u = (u1, u2, · · · , un), v = (v1, v2, · · · , vn)

is defined as
⟨u, v⟩A = ⟨Au, v⟩ = uTAT v
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Conjugate Gradient Method

Definition 8 (A-Conjugate)
Two nonzero vectors u and v are A-conjugate if

⟨u, v⟩A = 0

Definition 9 (Positive Definite)
A square matrix is positive definite if

⟨x, x⟩A > 0

for all nonzero vector x ∈ Rn.
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Conjugate Gradient Method

Definition 10 (Quadratic Form)
A quadratic form is a scalar quadratic function of a vector of the form

f(x) =
1

2
⟨x, x⟩A − ⟨b, x⟩+ c

Definition 11 (Gradient)
The gradient of a quadratic form is

f ′(x) =

[
∂f(x)

∂x1
,
∂f(x)

∂x2
, · · · , ∂f(x)

∂xn

]T
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Conjugate Gradient Method
From the gradient, we can observe that

f ′(x) =
1

2
ATx+

1

2
Ax− b

If A is symmetric, then we obtain that

f ′(x) = Ax− b

If we set f ′(x) = 0, and solve for x, then we can obtain the solution for our
problem.
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Conjugate Gradient Method
Suppose that B = {p(1), p(2), p(3), · · · , p(n)} is a set containing a sequence of
n mutually conjugate director vectors. Then, B forms a basis for Rn. If A is
symmetric and positive definite, then f(x) is minimized by the true solution
vector xr of Ax = b into a linear combination of these basis vectors

xr =

n∑
i=1

αip
(i)

where

αi =
⟨p(k), b⟩

⟨p(k), p(k)⟩A
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Conjugate Gradient Method
This method was introduced by Hestenes and Stiefel in 1952, but it was not
popular as it was viewed as direct method. However, when Reid viewed it as
an iterative process in 1971, this became popular and many variants of CG
methods are available.
In the iterative method, it takes less computation time and less storage and
much more useful for large sparse linear systems.
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Conjugate Gradient Method
Assume that A is symmetric and positive definite (SPD)
• Start with initial guess x(0) = 0

• Let xr be the unique minimizer of f(x), that is

f(x) =
1

2
xTAx− xTx

• Take the first basis vector of p(1) to be the gradient of f at x = x(0)

f ′(x) = −b

• The other vectors in the basis are now conjugate to the gradient. Hence
the name conjugate gradient method.

27



Conjugate Gradient Method

• The kth residual is given by

r(k) = b−Ax(k)

• The CG method moves in the direction r(k).
• Take the direction closest to the gradient vector r(k) by insisting that the

direction vector p(k) be conjugate to each other.

p(k+1) = r(k) − ⟨p(k), r(k)⟩A
⟨p(k), p(k)⟩A

p(k)

• CG method solves the system Ax = b in at most n steps.
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Conjugate Gradient Method
Observations
• Start with initial guess x(0) = 0

• The kth residual is given by

r(k) = b−Ax(k)

• r(k) is the negative gradient of f at x = x(k)

• The gradient descent method would require to move in the direction r(k).
• As we insist that to be in the direction p(k) be conjugate to each other

That is,

p(k) = r(k) −
∑
i<k

p(i)TAr(k)

p(i)TAp(i)
p(i)

29



Conjugate Gradient Method
Observations
• The next optimal location is given by

x(k+1) = x(k) + αkp
(k)

where

αk =
p(k)T (b−Ax(k))

p(k)TAp(k)
=

p(k)T (r(k))

p(k)TAp(k)

• It is obtained by minimizing f w.r.t. αk

g(αk) := f(x(k+1)) = f(x(k) + αkp
(k))

g′(αk) = 0 =⇒ αk =
p(k)T (b−Ax(k))

p(k)TAp(k)
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Conjugate Gradient Method

Theorem 12
If A is SPD, then CG method converges to the true solution within n iterations.

Theorem 13
If A has only n distinct eigenvalues, then the CG method converges in at most
n steps.

Theorem 14
If A is SPD and the error between the true solution and CG approximation is
ek = xk − x∗, then

∥ek∥A ≤ 2

(√
κ(A)2 − 1√
κ(A)2 + 1

)k

∥e0∥A
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BiCGStab
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BiConjugate Gradient Method

• For Conjugate gradient method, we need A to be symmetric or
self-adjoint.

• CG method is one of the fastest solver if A is SPD.
• For non-SPD matrices, this could fail.
• To overcome this another Krylov subspace KT is introduced.

b, AT b, A2T b, · · · , A(n−1)T b, AnT b, · · · ,

• In BiCGStab, we look for orthogonality properties as in CG, however, there
is no stability issues of solving ATAx = AT b.

• Note that BiCGStab has worse efficiency compared to CG when applied
to SPD matrices as it requires more matrix vector multiplications
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