
MA633L-Numerical Analysis
Lecture 3 : Asymptotic Notations and Computation Time

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

January 9, 2025

Asymptotic Notations

1

Big O

Definition 1 (Big O)
Let {xn} and {αn} be two different sequences. We write

xn = O(αn)

if there exist constants C such that

|xn| ≤ C|αn| ∀ n ≥ n0.

If αn ̸= 0 for all n, that is,

lim
n→∞

∣∣∣∣xnαn

∣∣∣∣ ≤ C

Here, we say xn is big O of αn.

2

Little o

Definition 2 (Little o)
We write

xn = o(αn)

if C = 0. That is,

lim
n→∞

∣∣∣∣xnαn

∣∣∣∣ = 0

Here, we say xn is little o of αn.
Let xn → 0 and αn → 0.
1. If xn = O(αn), then xn converges to 0 at least as rapidly as αn.
2. If xn = o(αn), then xn converges to 0 more rapidly than αn.

3

Little o and Big O

Example 3
Verify whether the following is true or not?

n+ 1

n2
= O

(
1

n

)
1

n lnn
= o

(
1

n

)
1

n
= o

(
1

lnn

)
5

n
+ e−n = O

(
1

n

)
10 ln(n) + 5(ln(n))3 + 7n+ 3n2 + 6n3 = O(n3)

4

Little o and Big O

Example 4
Verify whether the following is true or not?

e−n = o

(
1

n2

)
ln 2−

n−1∑
k=1

(−1)k−1 1

k
= O

(
1

n

)

ex −
n−1∑
k=0

xk
1

k!
= O

(
1

n!

)
(|x| ≤ 1)

5

Little o and Big O

Definition 5 (Big O)
Let f and g be two real valued functions. We write

f(x) = O(g(x)), as x→∞

if there exists constant C and r such that

|f(x)| ≤ C|g(x)| ∀ x ≥ r.

6

Little o and Big O

Definition 6 (Big O)
Let f and g be two real valued functions. We write

f(x) = O(g(x)), as x→ x0

if there exists constant C and r such that

|f(x)| ≤ C|g(x)| ∀ x with |x− x0| < r.

7

Little o and Big O

Definition 7 (Little o)
Let f and g be two real valued functions. In general, we write

f(x) = o(g(x)), as x→ x0

if
lim
x→x0

∣∣∣∣f(x)g(x)

∣∣∣∣ = 0

8

Little o and Big O

Example 8
Verify whether the following is true or not?

sinx− x+
x3

6
= O(x5) (x→ 0)√

x2 + 1 = O(x) (x→∞)

ex − 1 = O(x2) (x→ 0)

cotx = o(x−1) (x→ 0)

9

Ω and ω

Definition 9 (Big Ω)
Let f and g be two real valued functions. In general, we write

f(x) = Ω(g(x)), as x→ x0

if there exist constants C and r such that

|f(x)| ≥ C|g(x)| ∀ x ≥ r.

10

Ω and ω

Definition 10 (Little ω)
Let f and g be two real valued functions. In general, we write

f(x) = ω(g(x)), as x→ x0

if lim
x→x0

∣∣∣∣f(x)g(x)

∣∣∣∣ =∞

11

Θ and ∼

Definition 11 (Big Θ)
Let f and g be two real valued functions. In general, we write

f(x) = Θ(g(x)), as x→ x0

if there exist constants C1, C2 and r such that

C1|g(x)| ≤ |f(x)| ≤ C2|g(x)| ∀ x ≥ r.

12

Θ and ∼

Definition 12 (Similar)
Let f and g be two real valued functions. In general, we write

f ∼ g as x→ x0

if
if lim

x→x0

∣∣∣∣f(x)g(x)

∣∣∣∣ = 1

13

o, O, Ω, ω, Θ and ∼

• f = O(g) means that g describes the upper bound for f
• f = o(g) means that g describes the upper bound for f , but f can never

be equal to g

• f = Ω(g) means that g describes the lower bound for f
• f = Θ(g) means that g describes the exact bound for f
• f ∼ g means that f/g approaches 1

14

o, O, Ω, ω, Θ and ∼

• f = O(g) means that f grows no faster than g

• f = o(g) means that f grows slower than g

• f = Ω(g) means that f grows at least as fast as g

• f = ω(g) means that f grows faster than g

• f ∼ g means that f/g approaches 1

15

o, O, Ω, ω, Θ and ∼

Notation Comparison Limit Definition
f = O(g) f ≤ g lim

x→x0

∣∣∣f(x)g(x)

∣∣∣ <∞
f = o(g) f < g lim

x→x0

∣∣∣f(x)g(x)

∣∣∣ = 0

f = Θ(g) f = g lim
x→x0

∣∣∣f(x)g(x)

∣∣∣ ∈ (0,∞)

f = Ω(g) f ≥ g lim
x→x0

∣∣∣f(x)g(x)

∣∣∣ > 0

f = ω(g) f > g lim
x→x0

∣∣∣f(x)g(x)

∣∣∣ =∞
f ∼ g f ∼ g lim

x→x0

∣∣∣f(x)g(x)

∣∣∣ = 1

16

o, O, Ω, ω, Θ and ∼
The following observations are immediate

Theorem 13

f = O(g) and f = Ω(G) ⇐⇒ f = Θ(g)

f = O(g) ⇐⇒ g = Ω(f)

f = o(g) ⇐⇒ g = ω(f)

f = o(g) =⇒ f = O(g)

f = ω(g) =⇒ f = Ω(g)

f ∼ g =⇒ f = Θ(f)

(lnn)k = o(nα) and nk = o((1 + α)n),∀k, α > 0

17

Big O

Notation Name
O(1) Constant
O(log(n)) logarithmic
O((log(n))c) polyalgorithmic
O(n) linear
O(n2) quadratic
O(nc) polynomial
O(cn) exponential

Note that O(nc) and O(cn) are different, O(cn) grows much faster. A function
that grows faster than any power of n is called superpolynomial and that
grows slower than an exponential function cn is called subexponential.

18

Big O Graph

19

Big O Graph

20

Computation Time

21

Algorithm and Computer Program

Definition 14 (Algorithm)
An algorithm is a list of unambiguous rules that specify successive steps to
solve a problem.

Definition 15 (Computer Program)
The computer program is clearly specified sequence of computer instructions
implementing algorithm.

22

Elementary Operations

Definition 16 (Elementary Operations)
Most modern computers and languages build complex programs from ordi-
nary arithmetic and logical operations such as standard unary and binary op-
erations (negation, addition, subtraction, multiplication, division, modulo oper-
ations, assignment), boolean operations, binary comparisons (=, >,<,≥,≤),
branching operations. These operations are called as elementary operations.

23

Running Time

Definition 17 (Running Time)
The running time or computing time of an algorithm is the number of its ele-
mentary operations. It is denoted by T (n).

For this course, let us consider only addition, subtraction, multiplication and
division as elementary operations, for simplicity. Also, let us ignore the
indexing sum.

24

FLOPS

Definition 18 (Floating Point Operation)
A floating point operation means that the arithmetic mathematical computa-
tion is accomplished in floating point numbers that may include addition, sub-
traction, multiplication or division.

Definition 19 (FLOPS)
FLoating point Operations Per Second (FLOPS)

25

FLOPS

• A major factor in the comparison of the computational power of different
systems
• In particular, it is an important factor where numerical calculations are a

key point
• It measures the number of operations that a system can execute in

terms of one second computation power
• One of the major measure to assess whether a computer is

supercomputer or not

26

Running Time : Sum of Elements of an array

Example 20
Let a denote an array or list of integers where the sum

s =
n−1∑
i=0

a[i]

is required. To get the sum s, we need to repeat n times the same elementary
operations. Therefore, the running time T1(n) is proportional to or linear in n.
That is T1(n) = cn. This algorithm is called linear algorithm. The unknown
factor c depends on a particular computer, programming language, compiler,
OS etc.

27

Running Time: T1(n)

Algorithm 1: Linear Sum
Input: array, a[0, 1, · · · , n− 1]
Output: s

1 s← 0
2 for i← 0 to n− 1 do
3 s← s+ a[i]

In the above algorithm, suppose T1(1) is given to you, then you can compute
T1(1000) = 1000T1(1) = 10T1(100). If per addition, it takes 1s, then T1(1) = 1,
then T1(1000) = 1000s.

28

Sum of Elements of Subarrays

Example 21
Now, let us compute the sum of each subarray of some m. That is,

sj =
m−1∑
k=0

a[j + k], j = 0, 1, 2, · · · , n−m

1. How many subarrays are there in this sum?
2. Prove or disprove T2(n) = cm(n−m+ 1).
3. Also, if m = n

2 , prove or disprove T2(n) = 0.25cn2 + 0.5cn = O(n2).

29

Running Time: T2(n)

Algorithm 2: Quadratic Algorithms: Slow Sum
Input: array, a[0, 1, · · · , 2m− 1]
Output: s[0, 1, · · · ,m]

1 s← 0
2 for i← 0 to m do
3 s[i]← 0
4 for j ← 0 to m− 1 do
5 s[i]← s[i] + a[i+ j]

30

Running Time: T3(n)

Algorithm 3: Quadratic algorithms: Fast Sum
Input: array, a[0, 1, · · · , 2m− 1]
Output: s[0, 1, · · · ,m]

1 s[0]← 0
2 for j ← 0 to m− 1 do
3 s[0]← s[0] + a[j]

4 for i← 1 to m do
5 s[i]← s[i− 1] + a[i+m− 1]− a[i− 1]

31

Running Time: T1, T2, T3

n T1(n) Minutes T2(n) Minutes T3(n) Minutes
100
500
1000
5000
50000

Table 1: T1(n), T2(n), T3(n)

32

Norm of a Vector

Example 22
Let x = (x1, x2, · · · , xn) be a vector in Rn.

∥x∥22 =
n∑

i=1

|xi|2 (1)

∥x∥1 =
n∑

i=1

|xi| (2)

∥x∥pp =
n∑

i=1

|xi|p (3)

Compute the time requirement for each of the above sum when n = 1012.

33

Exercise

Exercise 1: Medium

1. Compute the T1(10
12), T2(10

12) and T3(10
12) without doing the

array sum operation.
2. Estimate the value of c from the table
3. Let a denote an array or list of real number and

s(x) =

n−1∑
i=0

aix
i

is required. Let T4(n) be the running time to compute s(x).
Compute the T4(10

12) without doing the array sum operation.

34

Exercise

Exercise 2: Medium

1. Compute the T1(10
12), T2(10

12) and T3(10
12) without doing the

array sum operation.
2. Estimate the value of c from the table
3. Let a denote an array or list of real number and

s(x) =

n−1∑
i=0

aix
i

is required. Let T4(n) be the running time to compute s(x).
Compute the T4(10

12) without doing the array sum operation.

35

Exercise

Exercise 3: Medium

4. Let S1(x) be the Taylor polynomial for sin(x)

S1(x) = sinx =

n−1∑
i=0

(−1)i x2i+1

(2i+ 1)!

5. For given n and x, compute S1(x)

6. Compare the value of S1(x) and sinx value obtained using the
Python numpy library

36

Exercise

Exercise 4: Medium

7. Let T5(n, x) be running time for S1(x). Fill out the following table
x n S1(x) np.sin(x) T5(n, x) Seconds
π/3 20
π/4 20
π/6 20
π/2 20
π/3 50
π/3 100

Table 2: sin(x)

37

Exercise

Exercise 5: Medium

8. Repeat exercise 7 for the Taylor polynomial corresponding to
cos(x), ex, tan−1(x), cos−1(x), Li2(x) [make changes in x, if
necessary]

9. Convert the table entries to years. How many years will take for
Ti(n), i = 1, 2, · · · , 8 if n = 106?

10. Suppose your computer can perform 103 [kFLOPS] operations
(+,-,*,/) per second, how many years will it take for finding the sum
using algorithm 2 and algorithm 3, when n = 109?

11. Repeat exercise 10, if computer can do 106 operations [MFLOPS],
109 operations [GFLOPS] and 1012 operations [TFLOPS].

38

Thanks
Doubts and Suggestions

panch.m@iittp.ac.in

39

MA633L-Numerical Analysis
Lecture 3 : Asymptotic Notations and Computation Time

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

January 9, 2025

39

