MA633L-Numerical Analysis

Lecture 31 : Numerical Linear Algebra - Eigenvalues

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

April 3, 2025

Theorems on Eigenvalues

Theorems on Eigenvalues

Theorem 1

The following statements are true for any square matrix \boldsymbol{A}

- 1. If λ is an eigenvalue of A, then $p(\lambda)$ is an eigenvalue of p(A) for any polynomial p. In particular λ^k is an eigenvalue of A^k .
- 2. If A is invertible and λ is an eigenvalue of A, then $p(1/\lambda)$ is an eigenvalue of $p(A^{-1})$ for any polynomial p. In particular λ^{-1} is an eigenvalue of A^{-1} .
- 3. If A is a real and symmetric, then its eigenvalues are real.
- 4. If A is complex and Hermitian, then its eigenvalues are real.
- 5. If A is Hermitian and positive definite, then its eigenvalues are positive.
- 6. If *P* is invertible, then *A* and PAP^{-1} have the same characteristic polynomial and the same eigenvalues.

Theorems on Eigenvalues

Theorem 2 Similar matrices have the same eigenvalues

Theorem 3 (Schur's Theorem) Every square matrix is unitarily similar to a triangular matrix

Corollary 1 Every square real matrix is similar to a triangular matrix

Corollary 2

Every square Hermitian matrix is unitarily similar to a diagonal matrix

Few Applications of Eigenvalues

- MUMERICAL ARAITE
- PageRank Algorithm: Uses eigenvectors to rank web pages based on their importance. THE \$25,000,000,000* EIGENVECTOR THE LINEAR ALGEBRA BEHIND GOOGLE
- Principal Component Analysis (PCA): Eigenpairs to find the direction of maximum variance in high-dimensional data Link
- Latent Semantic Analysis: Reduce the dimensionality of textual data in NLP Link.
- Face Recognition (Eigenfaces): Uses PCA to project facial images onto a lower dimensional eigenface space Link
- Compression algorithms: SVD

- This method is used to compute eigenvalues of a given matrix.
- Let A be an $n \times n$ matrix. Assume that eigenvalues of A satisfies the following property:

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$$

• Suppose each eigenvalue has a nonzero eigenvector $u^{(i)}$ and

$$Au^{(i)} = \lambda_i u^{(i)}, \quad i = 1, 2, \cdots, n$$

• Suppose $\{u^{(1)}, u^{(2)}, \cdots, u^{(n)}\}$ is a linearly independent set of n eigenvectors and it forms a basis for \mathbb{C}^n . (Do we really need linearly independent condition?)

- Power method computes the dominant eigenvalue, that is λ_1 .
- Let $x^{(0)} \in \mathbb{C}^n$ be an arbitrary starting vector.
- Since $\{u^{(1)}, u^{(2)}, \cdots, u^{(n)}\}$ is a basis for $C^{(n)},$ we have

$$x^{(0)} = \sum_{i=1}^{n} c_i u^{(i)}$$

• Assume that $c_1 \neq 0$. Further, we can absorb c_i into $u^{(i)}$ and write it as

$$x^{(0)} = \sum_{i=1}^{n} u^{(i)}$$

• Let

$$x^{(1)} = Ax^{(0)}$$

and

$$x^{(k)} = Ax^{(k-1)}$$

• It is easy to claim that

$$x^{(k)} = A^k x^{(0)}$$

Therefore,

$$x^{(k)} = A^k x^{(0)} = A^k \sum_{i=1}^n u^{(i)} = \sum_{i=1}^n \lambda_i^k u^{(i)}$$

Since $|\lambda_1| > |\lambda_i|$ for i > 1, we have

$$\frac{\lambda_i}{\lambda_1} < 1$$
$$\lim_{k \to \infty} \left(\frac{\lambda_i}{\lambda_1}\right)^k = 0$$

 $x^{(k)} = \lambda_1^k [u^{(1)} + \epsilon^{(k)}]$

Here

 $\lim_{k \to \infty} \epsilon^{(k)} = 0$

Now, let ϕ be any complex-valued linear functional on \mathbb{C}^n such that

 $\phi(u^{(1)}) \neq 0$

Note: A function ϕ is said to be linear functional if $\phi(ax + by) = a\phi(x) + b\phi(y)$ for scalars *a* and *b* and vectors *x* and *y*. **Example:** $\phi(x) = x_j$ is a linear functional.

$$\phi(x^{(k)}) = \lambda_1^k [\phi(u^{(1)}) + \phi(\epsilon^{(k)})]$$

Define r_k as follows

$$r_k = \frac{\phi(x^{(k+1)})}{\phi(x^{(k)})} = \lambda_1 \left[\frac{\phi(u^{(1)}) + \phi(\epsilon^{(k+1)})}{\phi(u^{(1)}) + \phi(\epsilon^{(k)})} \right]$$

Then, it is easy to verify that

$$\lim_{k \to \infty} r_k = \lambda_1$$

This gives the dominant eigenvalue λ_1 . In fact, we can obtain the respective eigenvector also after a careful manipulation.

Example 4

Find the dominant eigenvalue of the following matrix

$$\begin{bmatrix} 6 & 5 & -5 \\ 2 & 6 & -2 \\ 2 & 5 & -1 \end{bmatrix}, x^{(0)} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \phi(x) = x_2$$
$$x^{(0)} = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}, r_0 = 2$$
$$x^{(1)} = \begin{bmatrix} -0.90453 & 0.3015 & 0.30151 \end{bmatrix}, r_1 = -2$$
$$\vdots$$
$$x^{(31)} = \begin{bmatrix} -0.577352 & -0.577352 & -0.577352 \end{bmatrix}, r_{31} = 6.00001$$

Inverse Power Method

When *A* is invertible, it is possible to find the least eigenvalue using inverse power method. When λ is an eigenvalue of *A*, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} . Suppose λ_1 is the only smallest eigenvalue of *A*, then $\frac{1}{\lambda}$ is the dominant

eigenvalue of A^{-1} . That is,

$$|\lambda_1^{-1}| > |\lambda_2^{-1}| \ge |\lambda_3^{-1}| \ge \dots \ge |\lambda_n^{-1}| > 0$$

We can use power method on the matrix A^{-1} .

$$x^{(k+1)} = A^{-1}x^{(k)} \implies Ax^{(k+1)} = x^{(k)}$$

Now, we need to solve this system using either LU decomposition or other methods which we solved earlier.

Shifted Inverse Power Method

When we want to compute the eigenvalue of A that is close to a given number μ , we can apply the inverse power method to $A - \mu I$ and take the reciprocal of the limiting value of r, this should be $\lambda - \mu$. That is,

$$Ax = \lambda x \iff (A - \mu I)x = (\lambda - \mu)x \iff (A - \mu I)^{-1}x = \frac{1}{\lambda - \mu}x$$

Suppose that some eigenvalue λ_j of matrix A, we have $|\lambda_j - \mu| > \epsilon$ and $0 < |\lambda_i - \mu| < \epsilon$ for all $i \neq j$. Consider the shifted matrix $A - \mu I$, applying power method to the shifted matrix, $A - \mu I$, we compute ratios r_k that converge to $\lambda_j - \mu$. This procedure is called **shifted power method**. Similarly we can compute $\frac{1}{\lambda - \mu}$ and this algorithm is called **shifted inverse power method**.

Aitken Acceleration

Using the Aitken acceleration formula, the sequence $\{r_k\}$ can be accelerated to converge to r by Aitken acceleration.

$$s_k = r_k - \frac{(r_k - r_{k-1}^2)}{r_k - 2r_{k-1} + r_{k-2}}, k \ge 3$$

Other Eigenvalue Algorithm

Rayleigh Quotient

Definition 5 (Rayleigh Quotient)

The Rayleigh quotient is the expression

$$\frac{\langle x, x \rangle_A}{\langle x, x \rangle} = \frac{x^T A x}{x^T x}$$

Let λ_0 be the initial guess of an eigenvalue for the Hermitian matrix A and $x^{(0)}$ be the initial eigenvector guess, then

$$x^{(i+1)} = \frac{(A - \lambda_i I)^{-1} x^{(i)}}{\|(A - \lambda_i I)^{-1} x^{(i)}\|}$$

and

$$\lambda_{i+1} = \frac{x^{(i+1)*} A x^{(i+1)}}{x^{(i+1)*} x^{(i+1)}}$$

provides the eigenvector and eigenvalue.

QR Algorithm

For real matrix, if we want to compute the eigenvalues, we can employ QR-decomposition. Assume $A_0 = A$. At k^{th} step obtain the QR decomposition

$$A_k = Q_k R_k$$

where \mathcal{Q}_k is an orthogonal matrix and \mathcal{R}_k is an upper triangular matrix. Then form

$$A_{k+1} = R_k Q_k$$

Note:

$$A_{k+1} = R_k Q_k = Q_k^{-1} Q_k R_k Q_k = Q_k^{-1} A_k Q_k = Q_k^T A_k Q_k$$

Therefore, A_{k+1} and A_k are similar matrices and have same eigenvalues.

QR Algorithm

When conditions are imposed on A, then the matrices A_k converge to a triangular matrix, the Shcur form of A. We know eigenvalue of a triangular matrix are its diagonal entries, therefore, we can obtain all eigenvalues of A. **Note:** QR method is relatively expensive, it requires $O(n^3)$ operations for one step. The algorihm requires $O(n^4)$ operations.

Krylov Subspace methods

We can also employ Krylov subspace methods to compute eigenvalues such as

- 1. Arnoldi iteration
- 2. Lanczos algorithm
- 3. Block Lanczos algorithm

Other methods are

- 1. Divide and Conquer algorithm
- 2. Jacobi eigenvalue algorithm
- 3. Folded spectrum method
- 4. Locally optimal Block Preconditioned Conjugate Gradient Method.

Few Unsolved Problems in Numerical Linear Algebra

Open Problems in NLA

- 1. Hadamard Conjecture
- 2. Eigenvalue Distribution Conjecture for Random matrices
- 3. Necessary and sufficient conditions for a set of n real numbers to be the eigenvalues of a symmetric nonnegative matrix of order n
- 4. S-matrix conjecture
- 5. Jacobian Conjecture
- 6. Crouzeix's conjecture
- 7. Non-negative inverse Eigenvalue Problems (NIEP)

Open Problems 1 Open Problems 2

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

MA633L-Numerical Analysis

Lecture 31 : Numerical Linear Algebra - Eigenvalues

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

April 3, 2025

