
MA633L-Numerical Analysis
Lecture 32 : Numerical Integration - Newton-Cotes

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

April 3, 2025
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Numerical Integration

• In school days or in your calculus course, you have studied the
integration.

• When a function in one variable is given and an interval is given, then
integration (under certain conditions) represents the area under the
curve.

• The dictionary meaning of integration is "to bring together as parts into a
whole; to unite; to indicate the total amount".

• Mathematically it represents the summation. When the sum is in discrete
sense we use the symbol

∑
whereas for continuum cases, we represent

it with
�

where this symbol is elongated and stylised ’S’.
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Numerical Integration

• The integration is represented by

I =

� b

a
f(x)dx (1)

which represents the integral of the function f(x) with respect to the
independent variable x, evaluated between the limits x = a to x = b. It
represents the summation of f(x)dx over the range x = a to x = b. From
below figure, the area under the curve f(x) between x = a and x = b is given
by A(f).
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Numerical Integration
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Numerical Integration
From your calculus course, you could recall that, this can be calculated using
the upper Riemann sum and lower Riemann sum where the former fills the
area with larger rectangles and the latter with smaller rectangles.

Figure 1: Lower Riemann Sum 5



Numerical Integration
Each ith rectangle takes the width as xi − xi−1 and height as respectively
Mi = maxxi−1≤x≤xi f(x) and mi = minxi−1≤x≤xi f(x) for upper and lower
Riemann rectangles. Then the area of each upper Riemann rectangles Ui is
calculated by Ui = Mi(xi − xi−1) and the area of each lower Riemann
rectangles Li is calculated by Li = mi(xi − xi−1).

Figure 2: Upper Riemann Sum
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Numerical Integration

• According to the Riemann sum, the area A(f) is bounded between the
total sum of all area of lower Riemann rectangles and upper Riemann
integrals, that is,

n∑
i=1

Li ≤ A(f) ≤
n∑

i=1

Ui

or

L(Pn, f) =

n∑
i=1

mi(xi − xi−1) ≤ A(f) ≤
n∑

i=1

Mi(xi − xi−1) = U(Pn, f)

• When the partition is made finer and finer or n → ∞, we obtain the
integral as

A(f) =

� b

a
f(x)dx
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Numerical Integration

• Numerical integration are often referred as quadrature meant to
construct square having the same area as a curvilinear figure. However,
it refers to numerical definite integration nowadays.

• Integration is widely used by engineers to compute the mass, center of
gravity in civil and mechanical engineering, root mean square current in
electrical engineering, total mass of a chemical present in a reactor when
the concentration varies with respect to the location, energy transfer in
food processing engineering and so on.
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Numerical Integration

• In your real analysis or basic calculus course, you should have explored a
variety of integration and computed them exactly, but they are only
limited.

• In practice, it is not possible to compute the integration analytically.
• Also, when the measurements are known only at discrete points, it is not

possible to obtain the integration. Numerical integration technique could
approximate the values.

• Numerical integration is classified as Newton-Cotes formulas, Romberg
Integration, Quadrature rules.
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Numerical Integration-
Newton-Cotes
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Newton-Cotes

• Newton-Cotes formula is further divided into closed forms and open
forms.

• In the closed forms, it considers the end points of the closed interval
[a, b], whereas open form does not.

• The idea is once again to use Weierstrass approximation theorem.
• From real analysis course, we know that if the function is continuous, it is

integrable.
• By Weierstrass approximation theorem, each continuous function is

approximated by a polynomial of degree n.
• Since integrating the polynomial is an easier job compare to an arbitrary

continuous function f(x), Newton-Cotes formula exploits it.
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Newton-Cotes
• Suppose f ∈ C[a, b], then there exists a polynomial Pn(x) such that

|f − Pn| < ϵ

• The corresponding integration is given by

I =

� b

a
f(x)dx ∼=

� b

a
Pn(x)dx

• Instead of using a single polynomial, when different polynomials are
used at each of the ith interval, it is termed as composite rule.

I =

� b

a
f(x)dx ∼=

n∑
i=1

� xi

xi−1

Pni(x)dx

• When a first order polynomial is applied we obtain trapezoidal rule, for
second and third order polynomials respectively we obtain the Simpson’s
1/3 and Simpsons 3/8 rules. 12



Numerical
Integration-Basic
Trapezoidal Rule
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Basic Trapezoidal Rule
The trapezoidal rule is the first of the Newton-Cotes closed integration
formulas. It corresponds to the case where the polynomial is P1(x). When
(a, f(a)) and (b, f(b)) are two given points, then the line joining these two
points are given by

y − (f(a)

f(b)− f(a)
=

x− a

b− a

y = f(a) +
x− a

b− a
(f(b)− f(a))

Therefore, the polynomial is given by

P1(x) = f(a) +
x− a

b− a
(f(b)− f(a)) (2)
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Basic Trapezoidal Rule
Therefore, the integration is given by

I =

� b

a
f(x)dx =

� b

a
P1(x)dx

=

� b

a
f(a) +

x− a

b− a
(f(b)− f(a))dx

= f(a)[x]ba +

[
(x− a)2

2(b− a)
(f(b)− f(a))

]b
a

= f(a)(b− a) +
1

2
[f(b)− f(a)](b− a)

= (b− a)

[
f(a) +

f(b)

2
− f(a)

2

]
= (b− a)

f(a) + f(b)

2 15



Basic Trapezoidal Rule
The equation

I = (b− a)
f(a) + f(b)

2
(3)

is called the trapezoidal rule. It is equivalent to approximating the area of the
trapezoid under the line joining (a, f(a)) and (b, f(b)). From school
mathematics, we know that finding the area of trapezoid is the product of the
height and the average of the bases, here the bases are f(a) and f(b) and the
height is (b− a), that is

I = Width× Average Height
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Basic Trapezoidal Rule

Figure 3: trapezoidal Rule
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Basic Trapezoidal Rule
All Newton-cotes closed formula can be expressed in the above format with
different average heights. If we represent (x0, f(x0)) = (a, f(a)) and
(x1, f(x1)) = (b, f(b)), then we can use Lagrange polynomial

P1(x) =
x− x1
x0 − x1

f(x0) +
x− x0
x1 − x0

f(x1)

and the trapezoidal rule becomes

I = (x1 − x0)
f(x0) + f(x1)

2
(4)
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Error in Trapezoidal
Rule
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Error in Trapezoidal Rule

Theorem 1 (Error in trapezoidal Rule)
If f ∈ C2[a, b], then the error in trapezoidal rule is given by

−(b− a)3

12
f ′′(ξ)

for some ξ ∈ (a, b)

Proof:
The proof is again using the first interpolation error theorem,

f(x)− P1(x) =
1

2!
f ′′(ξ)(x− a)(x− b)

=⇒
� b

a
(f(x)− P1(x))dx =

1

2!
f ′′(ξ)

� b

a
(x− a)(x− b)dx
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Error in Trapezoidal Rule
Now

� b

a
(x− a)(x− b)dx =

1

2!

� b

a
(x− a)d

(x− b)2

2

=

[
(x− a)

(x− b)2

2

]b
a

−
� b

a

(x− b)2

2
dx

= −
[
(x− b)3

6

]b
a

=
(a− b)3

6
= −(b− a)3

6

=⇒
� b

a
(f(x)− P1(x))dx =

1

2!
f ′′(ξ)

� b

a
(x− a)(x− b)dx = −(b− a)3

12
f ′′(ξ)
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Examples: Trapezoidal
Rule
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Examples: Trapezoidal Rule

Example 2
Evaluate � 1

0
e−x2

dx

using trapezoidal rule.

a = 0, b = 1, f(a) = 1, f(b) = 0.36878

I = (b− a)
f(a) + f(b)

2
= 0.6839
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Examples: Trapezoidal Rule

Example 3

� 2

0
x2dx = (2− 0)

0 + 4

2
= 4

� 2

0
x4dx = (2− 0)

0 + 24

2
= 16

� 2

0

1

1 + x
dx = (2− 0)

1 + 0.3333

2
= 1.333

� 2

0

√
1 + x2dx = (2− 0)

1 +
√
5

2
= 3.236

� 2

0
exdx = (2− 0)

1 + e2

2
= 8.389
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Closed Newton-Cotes
Formula
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Closed Newton-Cotes Formula
The general (n+ 1)-points closed Newton-Cotes formula using nodes
xi = x0 + ih, for i = 0, 1, 2, · · ·n where x0 = a, xn = b, h = (b− a)/n is

� b

a
f(x)dx ∼=

n∑
i=0

[� xn

x0

ℓi(x)dx

]
f(xi) (5)

where ℓi’s are cardinal polynomials as we discussed in Lagrange
Interpolation. This method is referred as closed as it includes x0 = a and
xn = b in its computation. Equation (5) can also be written as

� b

a
f(x)dx ∼=

n∑
i=0

Aif(xi) (6)
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Method of undetermined coefficients

• In fact, these values of A′s can be obtained in a different way.
• Since f is continuous and we could approximate them using polynomials,

the following tricks could help us derive the equation in an easy way.
• Since the basis of any polynomial of degree n is {1, x, x2, · · · , xn}, which

has n+ 1 elements, we can obtain the values of Ai by evaluating it for
these basis functions.

• This process is called method of undetermined coefficients.

27



Method of undetermined coefficients

• Also, for simplifications purpose, let us use the change of variables and
following assumptions.

• Change of intervals: Let us formulate the rules usually on an interval
[0, 1] or [−1, 1] and transform to any [c, d] using change of intervals.

• If the formula obtained from (2) is exact for any polynomial of certain
degree over the first interval, the same is true for the transformed interval
by below theorem.

28



Closed Newton-Cotes Formula
In general to transform the interval [a, b] to [c, d], we can use the following
linear map, γ : [a, b] → [c, d] defined by (Derive!)

γ(x) =

(
d− c

b− a

)
x+

bc− ad

b− a

Theorem 4
If γ′ is continuous on the interval [a, b] and f is continuous on the range γ(x) =
u, then � b

a
f(γ(x)).γ′(x)dx =

� γ(b)

γ(a)
f(u)du (7)
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Closed Newton-Cotes Formula
By applying this theorem for our linear map γ which is differentiable and γ′ is
continuous we obtain that

γ′(x) =
d− c

b− a

γ(a) = c

γ(b) = d� b

a
f(γ(x))

d− c

b− a
dx =

� d

c
f(u)du

30



Closed Newton-Cotes Formula
Similarly, if we define γ−1 = λ : [c, d] → [a, b] as

λ(x) =

(
b− a

d− c

)
x+

ad− bc

d− c

then it can be written
� b

a
f(x)dx =

� d

c
f(λ(u))λ′(u)du

=
b− a

d− c

� d

c
f(λ(u))du

31



Closed Newton-Cotes Formula
Now, if define λ : [0, 1] → [a, b] as λ(x) = (b− a)x+ a, then λ(0) = a, λ(1) = b.
Therefore, it becomes

� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du (8)

Now, if define λ : [−1, 1] → [a, b] as

λ(x) =
1

2
(b− a)x+

1

2
(a+ b),

then λ(−1) = a, λ(0) = a+b
2 , λ(1) = b. Therefore, it becomes

� b

a
f(x)dx =

1

2
(b− a)

� 1

−1
f(λ(u))du (9)
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Trapezoidal Rule
Let us obtain the basic trapezoidal rule using this process. Now, for
trapezoidal rule, we obtain the formula on the interval [0, 1]. Trapezoidal rule
uses a linear polynomial, therefore, we need to identify two unknowns A0, A1

The Newton-Cotes formula becomes
� 1

0
f(x)dx ∼= A0f(0) +A1f(1) (10)
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Trapezoidal Rule
By the method of undetermined coefficients, we evaluate them on 1, x.

f(x) = 1 :

� 1

0
dx = A0 +A1 =⇒ A0 +A1 = 1

f(x) = x :

� 1

0
xdx = A1 =⇒ A1 =

1

2

Upon simplification, we obtain that

A0 = A1 =
1

2

34



Trapezoidal Rule
The resulting formula is

� 1

0
f(x)dx ≈ 1

2
[f(0) + f(1)] (11)

By (8), we obtain that
� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du ∼= (b− a)[A0f(λ(0)) +A1f(λ(1))]

≈ 1

2
(b− a)[f(a) + f(b)]

If h = (b− a), then
� b

a
f(x)dx ≈ h

2
[f(a) + f(b)]
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Simpson’s 1/3 Rule
For Simpson’s 1/3 rule, we use a quadratic polynomial, therefore, we need to
identify three unknowns A0, A1, A2. To obtain A0, A1, A2, let us use [−1, 1]
interval. The Newton-Cotes formula becomes

� 1

−1
f(x)dx ∼= A0f(−1) +A1f(0) +A2f(1) (12)

f(x) = 1 :

� 1

−1
dx = A0 +A1 +A2 =⇒ A0 +A1 +A2 = 2

f(x) = x :

� 1

−1
xdx = −A0 +A2 =⇒ −A0 +A2 = 0

f(x) = x2 :

� 1

−1
x2dx = A0 +A2 =⇒ A0 +A2 =

2

3
36



Simpson’s 1/3 Rule
Upon simplification, we obtain that

A0 =
1

3
, A2 =

1

3
, A1 =

4

3

The resulting formula is
� 1

−1
f(x)dx ≈ 1

3
[f(−1) + 4f(0) + f(1)] (13)
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Simpson’s 1/3 Rule
By (9), we obtain that

� b

a
f(x)dx =

1

2
(b− a)

� 1

−1
f(λ(u))du

∼=
1

2
(b− a)]A0f(λ(−1)) +A1f(λ(0)) +A2f(λ(1))]

≈ 1

6
(b− a)[f(a) + 4f

(
a+ b

2

)
+ f(b)]

If h = (b− a)/2, then
� b

a
f(x)dx ≈ h

3
[f(a) + 4f(a+ h) + f(b)]

38



Simpson’s 1/3 Rule

Figure 4: Simpson’s 1/3 and 3/8 Rule

39



Simpson’s 3/8 Rule
For Simpson’s 3/8 rule, we obtain the formula on the interval [0, 1]. It uses a
cubic polynomial, therefore, we need to identify four unknowns A0, A1, A2, A3

The Newton-Cotes formula becomes
� 1

0
f(x)dx ∼= A0f(0) +A1f

(
1

3

)
+A2f

(
2

3

)
+A3f(1) (14)
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Simpson’s 3/8 Rule
By the method of undetermined coefficients, we evaluate them on 1, x, x2, x3.

f(x) = 1 :

� 1

0
dx = A0 +A1 +A2 +A3 =⇒ A0 +A1 +A2 +A3 = 1

f(x) = x :

� 1

0
xdx =

1

3
A1 +

2

3
A2 +A3 =⇒ 1

3
A1 +

2

3
A2 +A3 =

1

2

f(x) = x2 :

� 1

0
x2dx =

1

9
A1 +

4

9
A2 +A3 =⇒ 1

9
A1 +

4

9
A2 +A3 =

1

3

f(x) = x3 :

� 1

0
x3dx =

1

27
A1 +

8

27
A2 +A3 =⇒ 1

27
A1 +

8

27
A2 +A3 =

1

4
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Simpson’s 3/8 Rule
Upon simplification, we obtain that

A0 = A3 =
1

8
, A1 = A2 =

3

8

The resulting formula is
� 1

0
f(x)dx ≈ 1

8
[f(0) + 3f

(
1

3

)
+ 3f

(
2

3

)
+ f(1)] (15)
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Simpson’s 3/8 Rule
By (8), we obtain that
� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du

∼= (b− a)[A0f(λ(0)) +A1f

(
λ

(
1

3

))
+A2f

(
λ

(
2

3

))
+A3λ(1)]

≈ 1

8
(b− a)[f(a) + 3f

(
2a+ b

3

)
+ 3f

(
a+ 2b

3

)
+ f(b)]

If h = (b− a)/3, then
� b

a
f(x)dx ≈ 3h

8
[f(a) + 3f(a+ h) + 3f(a+ 2h) + f(b)]
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Simpson’s 3/8 Rule
Due to the fact that h is multiplied by 3/8, it is referred as Simpson’s 3/8 rule.

Theorem 5
Error in Simpson’s 3/8 Rule
If f ∈ C4[a, b], then the error in Simpson’s 3/8 rule is given by

− 3

80

(
b− a

3

)5

f (4)(ξ)

for some ξ ∈ (a, b)

44



Some Closed
Newton-Cotes Formula
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Some Closed Newton-Cotes Formula
When n = 1, (n+1)-points closed Newton-Cotes formula provides trapezoidal
rule. Similarly Simpson’s 1/3 rule and 3/8 rules are obtained respectively while
choosing n = 2 and n = 3. When n = 4, we obtain the following Boole’s rule
� b

a
f(x)dx ≈ 2h

45
[7f(a) + 32f(a+ h) + 12f(a+ 2h) + 32f(a+ 3h) + 7f(b)]

with error as
E4(t) = − 8

945
h7f (6)(ξ), ξ ∈ (a, b)
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Some Closed Newton-Cotes Formula
When n = 5, we obtain the six-point Newton-Cotes closed rule as follows:

� b

a
f(x)dx ≈ 5h

28
[19f(a) + 75f(a+ h) + 50f(a+ 2h) + 50f(a+ 3h)

+ 75f(a+ 4h) + 19f(b)]

where the error is

E5(t) = − 275

12096
h7f (6)(ξ), ξ ∈ (a, b)

The following theorem gives the general error term for an (n+ 1)-points
closed Newton-Cotes formula. From this theorem, you can notice that when n
is even, we obtain higher accuracy compared to odd. Therefore, in practice, h
is considered as h = (b− a)/(2k), where n = 2k.
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Some Closed Newton-Cotes Formula

Theorem 6
Suppose that (5) denotes the (n + 1)− points closed Newton-Cotes formula
with x0 = a, xn = b and h = (b− a)/n. There exists ξ ∈ (a, b) for which

� b

a
f(x)dx =

n∑
i=0

Aif(xi) + En(t)

where the error is given by

En(t) =


hn+3

(n+ 2)!
f (n+2)(ξ)

� n

0
t2(t− 1) · · · (t− n)dt n is even, f ∈ Cn+2[a, b]

hn+2

(n+ 1)!
f (n+1)(ξ)

� n

0
t(t− 1) · · · (t− n)dt n is odd, f ∈ Cn+1[a, b]

48



Open Newton-Cotes
Formula
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Open Newton-Cotes Formula

• The open Newton-Cotes formula do not include the endpoints [a, b] as
nodes.

• They use only interior nodes.
• The numerical approximation for open Newton-Cotes formula is same as

(5), but, xi ∈ (a, b).
• In order to use the same formula (5), we redefine the points by spacing

as follows: x−1 = a, x0 = a+ h, xn+1 = b, xi = x0 + ih for each
i = 0, 1, 2, · · · , n where h = (b− a)/(n+ 2).

50



Midpoint Rule
For the midpoint formula, we take n = 0, then x−1 = a, x0 = (a+ b)/2, x1 = b.
Therefore, the interior point is only x0 = (a+ b)/2. When we work on the
interval [0, 1], change of intervals and method of undetermined coefficients,
we obtain that � 1

0
f(x)dx ∼= A0f

(
1

2

)
(16)

By the method of undetermined coefficients, we evaluate them on 1.

f(x) = 1 :

� 1

0
dx = A0 =⇒ A0 = 1

51



Midpoint Rule
The resulting formula is � 1

0
f(x)dx ≈ f

(
1

2

)
(17)

By (8), we obtain that
� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du ∼= (b− a)A0f

(
λ

(
1

2

))
≈ (b− a)f

(
a+ b

2

)
If h = (b− a)/2, then

� b

a
f(x)dx ≈ 2hf(a+ h)
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Midpoint Rule

Theorem 7 (Error in Midpoint Rule)
If f ∈ C2[a, b], then the error in Midpoint rule is given by

(b− a)3

24
f ′′(ξ)

for some ξ ∈ (a, b)Proof: By Taylor polynomial about (a+ b)/2 for each x ∈ (a, b) is given by

f(x) = f

(
a+ b

2

)
+ f ′

(
a+ b

2

)(
x− a+ b

2

)
+

1

2
f ′′(ξ)

(
x− a+ b

2

)2
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Midpoint Rule
Integrating on both sides we obtain that

� b

a
f(x)dx = f

(
a+ b

2

)
(b− a) +

1

2
f ′

(
a+ b

2

)
�����������������:0[(

b− a+ b

2

)2

−
(
a− a+ b

2

)2
]

+
1

6
f ′′(ξ)

[(
b− a+ b

2

)3

−
(
a− a+ b

2

)3
]

= f

(
a+ b

2

)
(b− a) +

1

3
f ′′(ξ)

(
b− a

2

)3

Hence the proof.
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Two-Point Newton-Cotes Open Rule
For the Two-point formula, we take n = 1, then
x−1 = a, x0 = (a+ b)/3, x0 = 2(a+ b)/3, x2 = b. Therefore, the interior points
are only x0 = (a+ b)/3 and x1 = 2(a+ b)/3. When we work on the interval
[0, 1], change of intervals and method of undetermined coefficients, we obtain
that � 1

0
f(x)dx ∼= A0f

(
1

3

)
+A1f

(
2

3

)
(18)
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Two-Point Newton-Cotes Open Rule
By the method of undetermined coefficients, we evaluate them on {1, x}.

f(x) = 1 :

� 1

0
dx = A0 +A1 =⇒ A0 +A1 = 1

f(x) = x :

� 1

0
xdx = A0

1

3
+A1

2

3
=⇒ 1

3
A0 +

2

3
A1 =

1

2

Solving for A0, A1, we obtain that A0 = 1/2, A1 = 1/2.
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Two-Point Newton-Cotes Open Rule
The resulting formula is

� 1

0
f(x)dx ≈ 1

2
f

(
1

3

)
+

1

2
f

(
2

3

)
(19)

By (8), we obtain that
� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du

∼= (b− a)A0f

(
λ

(
1

3

))
+ (b− a)A1f

(
λ

(
2

3

))
≈ (b− a)

2

[
f

(
a+

b− a

3

)
+ f

(
a+ 2

b− a

3

)]
57



Two-Point Newton-Cotes Open Rule
If h = (b− a)/3, then

� b

a
f(x)dx ≈ 3h

2
[f(a+ h) + f(a+ 2h)]
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Two-Point Newton-Cotes Open Rule

Theorem 8 (Error in Two-point Newton-Cotes Open Rule)
If f ∈ C2[a, b], then the error in Two-point rule is given by

(b− a)3

36
f ′′(ξ)

for some ξ ∈ (a, b)
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Midpoint Rule

Example 9
Evaluate � 1

0
e−x2

dx

using Midpoint rule.

a = 0, b = 1,
a+ b

2
= 0.5, f

(
a+ b

2

)
= 0.7788

� 1

0
e−x2

dx = (1− 0)f(0.5) = 0.7788
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Two-Point Newton-Cotes Open Rule

Example 10
Using Two-Point Newton-Cotes open rule, the following numerical integration
can be obtained.

� 2

0
x2dx = 3−0

2 [49 + 16
9 ] =

10
3 , Et =

2

3� 3

0

1

1 + x
dx = 3−0

2 [0.5 + 1
3 ] = 1.25, Et = 0.1363

� 3

0

√
1 + x2dx = 3−0

2 [
√
2 +

√
5] = 5.0673, Et = −0.5853

� 3

0
exdx = 3−0

2 [e+ e2] = 15.16, Et = 3.9246
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Some Open
Newton-Cotes Formula
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Some Open Newton-Cotes Formula
When n = 0, open Newton-Cotes formula provides Midpoint rule. Similarly,
when n = 1, it yields the two-point Newton-Cotes open rule. When n = 3, the
following three point Newton-Cotes open rule is obtained

� b

a
f(x)dx ≈ 4h

3
[2f(a+ h)− f(a+ 2h) + 2f(a+ 3h)]

with error as
E3(t) =

14

45
h5f (4)(ξ), ξ ∈ (a, b)
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Some Open Newton-Cotes Formula
When n = 4, we obtain the following four-point Newton-Cotes open rule

� b

a
f(x)dx ≈ 5h

24
[11f(a+ h) + f(a+ 2h) + f(a+ 3h) + 11f(a+ 4h)]

where the error is
E4(t) =

95

144
h5f (4)(ξ), ξ ∈ (a, b)
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Some Open Newton-Cotes Formula
When n = 5, we obtain the following five-point Newton-Cotes open rule
� b

a
f(x)dx ≈ 6h

20
[11f(a+ h)− 14f(a+ 2h) + 26f(a+ 3h)− 14f(a+ 4h) + 11f(a+ 5h)]

where the error is
E5(t) = − 41

140
h7f (6)(ξ), ξ ∈ (a, b)

The following theorem gives the general error term for an (n+ 1)-points
closed Newton-Cotes formula.
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Some Open Newton-Cotes Formula

Theorem 11
Suppose that (5) denotes the open Newton-Cotes formula with x−1 =
a, xn+1 = b, x0 = a+h, xi = x0+ ih, i = 0, 1, 2, · · · , nwhere h = (b−a)/(n+2).
There exists ξ ∈ (a, b) for which

� b

a
f(x)dx =

n∑
i=0

Aif(xi) + En(t)

where the error is given by

En(t) =


hn+3

(n+ 2)!
f (n+2)(ξ)

� n+1

−1
t2(t− 1) · · · (t− n)dt n is even, f ∈ Cn+2

hn+2

(n+ 1)!
f (n+1)(ξ)

� n+1

−1
t(t− 1) · · · (t− n)dt n is odd, f ∈ Cn+1
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