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Closed Newton-Cotes
Formula
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Closed Newton-Cotes Formula
The general (n+ 1)-points closed Newton-Cotes formula using nodes
xi = x0 + ih, for i = 0, 1, 2, · · ·n where x0 = a, xn = b, h = (b− a)/n is

� b

a
f(x)dx ∼=

n∑
i=0

[� xn

x0

ℓi(x)dx

]
f(xi) (1)

where ℓi’s are cardinal polynomials as we discussed in Lagrange
Interpolation. This method is referred as closed as it includes x0 = a and
xn = b in its computation. Equation (1) can also be written as

� b

a
f(x)dx ∼=

n∑
i=0

Aif(xi) (2)
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Method of undetermined coefficients

• In fact, these values of A′s can be obtained in a different way.
• Since f is continuous and we could approximate them using polynomials,

the following tricks could help us derive the equation in an easy way.
• Since the basis of any polynomial of degree n is {1, x, x2, · · · , xn}, which

has n+ 1 elements, we can obtain the values of Ai by evaluating it for
these basis functions.

• This process is called method of undetermined coefficients.
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Method of undetermined coefficients

• Also, for simplifications purpose, let us use the change of variables and
following assumptions.

• Change of intervals: Let us formulate the rules usually on an interval
[0, 1] or [−1, 1] and transform to any [c, d] using change of intervals.

• If the formula obtained from (2) is exact for any polynomial of certain
degree over the first interval, the same is true for the transformed interval
by below theorem.
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Closed Newton-Cotes Formula
In general to transform the interval [a, b] to [c, d], we can use the following
linear map, γ : [a, b] → [c, d] defined by (Derive!)

γ(x) =

(
d− c

b− a

)
x+

bc− ad

b− a

Theorem 1
If γ′ is continuous on the interval [a, b] and f is continuous on the range γ(x) =
u, then � b

a
f(γ(x)).γ′(x)dx =

� γ(b)

γ(a)
f(u)du (3)
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Closed Newton-Cotes Formula
By applying this theorem for our linear map γ which is differentiable and γ′ is
continuous we obtain that

γ′(x) =
d− c

b− a

γ(a) = c

γ(b) = d� b

a
f(γ(x))

d− c

b− a
dx =

� d

c
f(u)du
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Closed Newton-Cotes Formula
Similarly, if we define γ−1 = λ : [c, d] → [a, b] as

λ(x) =

(
b− a

d− c

)
x+

ad− bc

d− c

then it can be written
� b

a
f(x)dx =

� d

c
f(λ(u))λ′(u)du

=
b− a

d− c

� d

c
f(λ(u))du
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Closed Newton-Cotes Formula
Now, if define λ : [0, 1] → [a, b] as λ(x) = (b− a)x+ a, then λ(0) = a, λ(1) = b.
Therefore, it becomes

� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du (4)

Now, if define λ : [−1, 1] → [a, b] as

λ(x) =
1

2
(b− a)x+

1

2
(a+ b),

then λ(−1) = a, λ(0) = a+b
2 , λ(1) = b. Therefore, it becomes

� b

a
f(x)dx =

1

2
(b− a)

� 1

−1
f(λ(u))du (5)
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Simpson’s 1/3 Rule
For Simpson’s 1/3 rule, we use a quadratic polynomial, therefore, we need to
identify three unknowns A0, A1, A2. To obtain A0, A1, A2, let us use [−1, 1]
interval. The Newton-Cotes formula becomes

� 1

−1
f(x)dx ∼= A0f(−1) +A1f(0) +A2f(1) (6)

f(x) = 1 :

� 1

−1
dx = A0 +A1 +A2 =⇒ A0 +A1 +A2 = 2

f(x) = x :

� 1

−1
xdx = −A0 +A2 =⇒ −A0 +A2 = 0

f(x) = x2 :

� 1

−1
x2dx = A0 +A2 =⇒ A0 +A2 =

2

3
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Simpson’s 1/3 Rule
Upon simplification, we obtain that

A0 =
1

3
, A2 =

1

3
, A1 =

4

3

The resulting formula is
� 1

−1
f(x)dx ≈ 1

3
[f(−1) + 4f(0) + f(1)] (7)
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Simpson’s 1/3 Rule
By (5), we obtain that

� b

a
f(x)dx =

1

2
(b− a)

� 1

−1
f(λ(u))du

∼=
1

2
(b− a)]A0f(λ(−1)) +A1f(λ(0)) +A2f(λ(1))]

≈ 1

6
(b− a)[f(a) + 4f

(
a+ b

2

)
+ f(b)]

If h = (b− a)/2, then
� b

a
f(x)dx ≈ h

3
[f(a) + 4f(a+ h) + f(b)]
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Simpson’s 1/3 Rule

Figure 1: Simpson’s 1/3 and 3/8 Rule
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Simpson’s 3/8 Rule
For Simpson’s 3/8 rule, we obtain the formula on the interval [0, 1]. It uses a
cubic polynomial, therefore, we need to identify four unknowns A0, A1, A2, A3

The Newton-Cotes formula becomes
� 1

0
f(x)dx ∼= A0f(0) +A1f

(
1

3

)
+A2f

(
2

3

)
+A3f(1) (8)
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Simpson’s 3/8 Rule
By the method of undetermined coefficients, we evaluate them on 1, x, x2, x3.

f(x) = 1 :

� 1

0
dx = A0 +A1 +A2 +A3 =⇒ A0 +A1 +A2 +A3 = 1

f(x) = x :

� 1

0
xdx =

1

3
A1 +

2

3
A2 +A3 =⇒ 1

3
A1 +

2

3
A2 +A3 =

1

2

f(x) = x2 :

� 1

0
x2dx =

1

9
A1 +

4

9
A2 +A3 =⇒ 1

9
A1 +

4

9
A2 +A3 =

1

3

f(x) = x3 :

� 1

0
x3dx =

1

27
A1 +

8

27
A2 +A3 =⇒ 1

27
A1 +

8

27
A2 +A3 =

1

4
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Simpson’s 3/8 Rule
Upon simplification, we obtain that

A0 = A3 =
1

8
, A1 = A2 =

3

8

The resulting formula is
� 1

0
f(x)dx ≈ 1

8
[f(0) + 3f

(
1

3

)
+ 3f

(
2

3

)
+ f(1)] (9)

15



Simpson’s 3/8 Rule
By (4), we obtain that
� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du

∼= (b− a)[A0f(λ(0)) +A1f

(
λ

(
1

3

))
+A2f

(
λ

(
2

3

))
+A3λ(1)]

≈ 1

8
(b− a)[f(a) + 3f

(
2a+ b

3

)
+ 3f

(
a+ 2b

3

)
+ f(b)]

If h = (b− a)/3, then
� b

a
f(x)dx ≈ 3h

8
[f(a) + 3f(a+ h) + 3f(a+ 2h) + f(b)]
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Error in Basic
Simpson’s 1/3 Rule
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Error in Simpson’s 1/3 Rule

Theorem 2 (Error in Simpson’s 1/3 Rule)
If f ∈ C4[a, b], then the error in Simpson’s 1/3 rule is given by

− 1

90

(
b− a

2

)5

f (4)(ξ)

for some ξ ∈ (a, b)

Proof:
Note that, when we approach the error through first interpolation error
theorem we will get only an O( (b−a)4

16 ) error term involving f (3)(ξ) as

f(x)− P2(x) =
1

3!
f (3)(ξ)(x− a)

(
x− a+ b

2

)
(x− b)
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Error in Simpson’s 1/3 Rule
However, when we approach this using Taylor polynomial about x1, then for
each x ∈ (x0, x2), there exist ξ such that

f(x) = f(x1) + f ′(x1)(x− x1) +
1

2
f ′′(x1)(x− x1)

2 +
1

6
f (3)(x1)(x− x1)

3

+
1

24
f (4)(ξ)(x− x1)

4

Integrating on both sides, we obtain that
� x2

x0

f(x)dx = f(x1)(x2 − x0) +
1

2
f ′(x1)[(x2 − x1)

2 − (x0 − x1)
2]

+
1

6
f ′′(x1)[(x2 − x1)

3 − (x0 − x1)
3] +

1

24
f (3)(x1)[(x2 − x1)

4 − (x0 − x1)
4]

+
1

120
f (4)(ξ)[(x2 − x1)

5 − (x0 − x1)
5]
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Error in Simpson’s 1/3 Rule
Since

2(x0 − x1) = 2(x1 − x2) = (x0 − x2) = a− b,

we have

� x2

x0

f(x)dx = f(x1)(b− a) +

����������������:0

1

2
f ′(x1)[(x2 − x1)

2 − (x0 − x1)
2]

+
1

6
f ′′(x1)

�������������:
2( b−a

2 )3

[(x2 − x1)
3 − (x0 − x1)

3] +

������������������:0

1

24
f (3)(x1)[(x2 − x1)

4 − (x0 − x1)
4]

+
1

120
f (4)(ξ)

�������������:
2( b−a

2 )5

[(x2 − x1)
5 − (x0 − x1)

5]
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Error in Simpson’s 1/3 Rule
Since

f ′′(x) = 4
f(x0)− 2f(x1) + f(x2)

(b− a)2
− (b− a)2

12
f (4)(ξ1)

we have
� x2

x0

f(x)dx = f(x1)(b− a) +
1

3

[
f(x0)− 2f(x1) + f(x2)

(b− a)2
− (b− a)2

12
f (4)(ξ1)

](
b− a

2

)3

+
1

60
f (4)(ξ2)

(
b− a

2

)5

=

(
b− a

6

)
[f(x0) + 4f(x1) + f(x2)]−

(
b− a

2

)5
[
f (4)(ξ2)

36
− f (4)(ξ1)

60

]

+
1

60
f (4)(ξ2)

(
b− a

2

)5
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Error in Simpson’s 1/3 Rule

� x2

x0

f(x)dx =

(
b− a

6

)
[f(x0) + 4f(x1) + f(x2)]−

1

90

(
b− a

2

)5

f (4)(ξ)

Hence the proof.
In terms of h, it written as

f(x) =
h

3
[f(x0) + 4f(x1) + f(x2)]−

1

90
h5f (4)(ξ)
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Examples in Basic
Simpson’s 1/3 Rule
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Error in Simpson’s 1/3 Rule

Example 3
Evaluate � 1

0
e−x2

dx

using Simpson’s 1/3 rule.

a = 0, b = 1,
a+ b

2
= 0.5,

f(a) = 1, f(b) = 0.36878, f

(
a+ b

2

)
= 0.7788

� 1

0
e−x2

dx =
1− 0

6
[f(0) + 4f(0.5) + f(1)] = 0.7472
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Error in Simpson’s 1/3 Rule

Example 4
Using Simpson’s 1/3 rule, the following numerical integration can be obtained.

� 2

0
x2dx = 2−0

6 [0 + 4 + 4] = 2.6667, Et =
8

3
− 8

3
= 0

� 2

0
x4dx = 2−0

6 [0 + 4 + 16] = 6.6667, Et =
32

5
− 20

3
=

−4

15� 2

0

1

1 + x
dx = 2−0

6 [1 + 2 + 1
3 ] = 1.1112, Et = −0.0126

� 2

0

√
1 + x2dx = 2−0

6 [1 + 4 ∗
√
2 +

√
5] = 2.9643, Et = −0.00641

� 2

0
exdx = 2−0

6 [1 + 4 ∗ e+ 4 ∗ e2] = 6.421, Et = −0.032
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Error in Basic
Simpson’s 1/3 Rule
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Simpson’s 3/8 Rule
Due to the fact that h is multiplied by 3/8, it is referred as Simpson’s 3/8 rule.

Theorem 5
Error in Simpson’s 3/8 Rule
If f ∈ C4[a, b], then the error in Simpson’s 3/8 rule is given by

− 3

80

(
b− a

3

)5

f (4)(ξ)

for some ξ ∈ (a, b)

Proof: Exercise
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Some Closed
Newton-Cotes Formula
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Some Closed Newton-Cotes Formula
When n = 1, (n+1)-points closed Newton-Cotes formula provides trapezoidal
rule. Similarly Simpson’s 1/3 rule and 3/8 rules are obtained respectively while
choosing n = 2 and n = 3. When n = 4, we obtain the following Boole’s rule
� b

a
f(x)dx ≈ 2h

45
[7f(a) + 32f(a+ h) + 12f(a+ 2h) + 32f(a+ 3h) + 7f(b)]

with error as
E4(t) = − 8

945
h7f (6)(ξ), ξ ∈ (a, b)
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Some Closed Newton-Cotes Formula
When n = 5, we obtain the six-point Newton-Cotes closed rule as follows:

� b

a
f(x)dx ≈ 5h

28
[19f(a) + 75f(a+ h) + 50f(a+ 2h) + 50f(a+ 3h)

+ 75f(a+ 4h) + 19f(b)]

where the error is

E5(t) = − 275

12096
h7f (6)(ξ), ξ ∈ (a, b)

The following theorem gives the general error term for an (n+ 1)-points
closed Newton-Cotes formula. From this theorem, you can notice that when n
is even, we obtain higher accuracy compared to odd. Therefore, in practice, h
is considered as h = (b− a)/(2k), where n = 2k.
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Closed Newton-Cotes Formula

Theorem 6
Suppose that

n∑
i=0

Aif(xi) denotes the (n + 1)− points closed Newton-Cotes

formula with x0 = a, xn = b and h = (b − a)/n. Then Ai = An−i. If n is even,
then the resulting formula is exact for any polynomials of degree n+ 1.
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Error in Closed Newton-Cotes Formula

Theorem 7
Suppose that

n∑
i=0

Aif(xi) denotes the (n + 1)− points closed Newton-Cotes

formula with x0 = a, xn = b and h = (b−a)/n. There exists ξ ∈ (a, b) for which
� b

a
f(x)dx =

n∑
i=0

Aif(xi) + En(t)

where the error is given by

En(t) =


hn+3

(n+ 2)!
f (n+2)(ξ)

� n

0
t2(t− 1) · · · (t− n)dt n is even, f ∈ Cn+2[a, b]

hn+2

(n+ 1)!
f (n+1)(ξ)

� n

0
t(t− 1) · · · (t− n)dt n is odd, f ∈ Cn+1[a, b]
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Open Newton-Cotes
Formula
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Open Newton-Cotes Formula

• The open Newton-Cotes formula do not include the endpoints [a, b] as
nodes.

• They use only interior nodes.
• The numerical approximation for open Newton-Cotes formula is same as

(1), but, xi ∈ (a, b).
• In order to use the same formula (1), we redefine the points by spacing as

follows: x−1 = a, x0 = a+ h, xn+1 = b, xi = x0 + ih for each
i = 0, 1, 2, · · · , n where h = (b− a)/(n+ 2).
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Midpoint Rule
For the midpoint formula, we take n = 0, then x−1 = a, x0 = (a+ b)/2, x1 = b.
Therefore, the interior point is only x0 = (a+ b)/2. When we work on the
interval [0, 1], change of intervals and method of undetermined coefficients,
we obtain that � 1

0
f(x)dx ∼= A0f

(
1

2

)
(10)

By the method of undetermined coefficients, we evaluate them on 1.

f(x) = 1 :

� 1

0
dx = A0 =⇒ A0 = 1
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Midpoint Rule
The resulting formula is � 1

0
f(x)dx ≈ f

(
1

2

)
(11)

By (4), we obtain that
� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du ∼= (b− a)A0f

(
λ

(
1

2

))
≈ (b− a)f

(
a+ b

2

)
If h = (b− a)/2, then

� b

a
f(x)dx ≈ 2hf(a+ h)
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Midpoint Rule

Theorem 8 (Error in Midpoint Rule)
If f ∈ C2[a, b], then the error in Midpoint rule is given by

(b− a)3

24
f ′′(ξ)

for some ξ ∈ (a, b)Proof: By Taylor polynomial about (a+ b)/2 for each x ∈ (a, b) is given by

f(x) = f

(
a+ b

2

)
+ f ′

(
a+ b

2

)(
x− a+ b

2

)
+

1

2
f ′′(ξ)

(
x− a+ b

2

)2
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Midpoint Rule
Integrating on both sides we obtain that

� b

a
f(x)dx = f

(
a+ b

2

)
(b− a) +

1

2
f ′

(
a+ b

2

)
�����������������:0[(

b− a+ b

2

)2

−
(
a− a+ b

2

)2
]

+
1

6
f ′′(ξ)

[(
b− a+ b

2

)3

−
(
a− a+ b

2

)3
]

= f

(
a+ b

2

)
(b− a) +

1

3
f ′′(ξ)

(
b− a

2

)3

Hence the proof.
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Two-Point Newton-Cotes Open Rule
For the Two-point formula, we take n = 1, then
x−1 = a, x0 = (a+ b)/3, x0 = 2(a+ b)/3, x2 = b. Therefore, the interior points
are only x0 = (a+ b)/3 and x1 = 2(a+ b)/3. When we work on the interval
[0, 1], change of intervals and method of undetermined coefficients, we obtain
that � 1

0
f(x)dx ∼= A0f

(
1

3

)
+A1f

(
2

3

)
(12)
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Two-Point Newton-Cotes Open Rule
By the method of undetermined coefficients, we evaluate them on {1, x}.

f(x) = 1 :

� 1

0
dx = A0 +A1 =⇒ A0 +A1 = 1

f(x) = x :

� 1

0
xdx = A0

1

3
+A1

2

3
=⇒ 1

3
A0 +

2

3
A1 =

1

2

Solving for A0, A1, we obtain that A0 = 1/2, A1 = 1/2.
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Two-Point Newton-Cotes Open Rule
The resulting formula is

� 1

0
f(x)dx ≈ 1

2
f

(
1

3

)
+

1

2
f

(
2

3

)
(13)

By (4), we obtain that
� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du

∼= (b− a)A0f

(
λ

(
1

3

))
+ (b− a)A1f

(
λ

(
2

3

))
≈ (b− a)

2

[
f

(
a+

b− a

3

)
+ f

(
a+ 2

b− a

3

)]
41



Two-Point Newton-Cotes Open Rule
If h = (b− a)/3, then

� b

a
f(x)dx ≈ 3h

2
[f(a+ h) + f(a+ 2h)]
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Two-Point Newton-Cotes Open Rule

Theorem 9 (Error in Two-point Newton-Cotes Open Rule)
If f ∈ C2[a, b], then the error in Two-point rule is given by

(b− a)3

36
f ′′(ξ)

for some ξ ∈ (a, b)
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Midpoint Rule

Example 10
Evaluate � 1

0
e−x2

dx

using Midpoint rule.

a = 0, b = 1,
a+ b

2
= 0.5, f

(
a+ b

2

)
= 0.7788

� 1

0
e−x2

dx = (1− 0)f(0.5) = 0.7788
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Two-Point Newton-Cotes Open Rule

Example 11
Using Two-Point Newton-Cotes open rule, the following numerical integration
can be obtained.

� 2

0
x2dx = 3−0

2 [49 + 16
9 ] =

10
3 , Et =

2

3� 3

0

1

1 + x
dx = 3−0

2 [0.5 + 1
3 ] = 1.25, Et = 0.1363

� 3

0

√
1 + x2dx = 3−0

2 [
√
2 +

√
5] = 5.0673, Et = −0.5853

� 3

0
exdx = 3−0

2 [e+ e2] = 15.16, Et = 3.9246
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Some Open
Newton-Cotes Formula
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Some Open Newton-Cotes Formula
When n = 0, open Newton-Cotes formula provides Midpoint rule. Similarly,
when n = 1, it yields the two-point Newton-Cotes open rule. When n = 3, the
following three point Newton-Cotes open rule is obtained

� b

a
f(x)dx ≈ 4h

3
[2f(a+ h)− f(a+ 2h) + 2f(a+ 3h)]

with error as
E3(t) =

14

45
h5f (4)(ξ), ξ ∈ (a, b)
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Some Open Newton-Cotes Formula
When n = 4, we obtain the following four-point Newton-Cotes open rule

� b

a
f(x)dx ≈ 5h

24
[11f(a+ h) + f(a+ 2h) + f(a+ 3h) + 11f(a+ 4h)]

where the error is
E4(t) =

95

144
h5f (4)(ξ), ξ ∈ (a, b)
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Some Open Newton-Cotes Formula
When n = 5, we obtain the following five-point Newton-Cotes open rule
� b

a
f(x)dx ≈ 6h

20
[11f(a+ h)− 14f(a+ 2h) + 26f(a+ 3h)− 14f(a+ 4h) + 11f(a+ 5h)]

where the error is
E5(t) = − 41

140
h7f (6)(ξ), ξ ∈ (a, b)

The following theorem gives the general error term for an (n+ 1)-points
closed Newton-Cotes formula.
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Some Open Newton-Cotes Formula

Theorem 12
Suppose that

n∑
i=0

Aif(xi) denotes the open Newton-Cotes formula with x−1 =

a, xn+1 = b, x0 = a+h, xi = x0+ ih, i = 0, 1, 2, · · · , nwhere h = (b−a)/(n+2).
There exists ξ ∈ (a, b) for which

� b

a
f(x)dx =

n∑
i=0

Aif(xi) + En(t)

where the error is given by

En(t) =


hn+3

(n+ 2)!
f (n+2)(ξ)

� n+1

−1
t2(t− 1) · · · (t− n)dt n is even, f ∈ Cn+2

hn+2

(n+ 1)!
f (n+1)(ξ)

� n+1

−1
t(t− 1) · · · (t− n)dt n is odd, f ∈ Cn+1
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51



MA633L-Numerical Analysis
Lecture 32 : Numerical Integration - Newton-Cotes

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

April 4, 2025

51


