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Open Newton-Cotes
Formula
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Open Newton-Cotes Formula
The general (n+ 1)-points closed Newton-Cotes formula using nodes
xi = x0 + ih, for i = 0, 1, 2, · · ·n where x0 = a, xn = b, h = (b− a)/n is

� b

a
f(x)dx ∼=

n∑
i=0

[� xn

x0

ℓi(x)dx

]
f(xi) ∼=

n∑
i=0

Aif(xi) (1)

• The open Newton-Cotes formula do not include the endpoints [a, b] as
nodes.

• They use only interior nodes.
• The numerical approximation for open Newton-Cotes formula is same as

(1), but, xi ∈ (a, b).
• In order to use the same formula (1), we redefine the points by spacing as

follows: x−1 = a, x0 = a+ h, xn+1 = b, xi = x0 + ih for each
i = 0, 1, 2, · · · , n where h = (b− a)/(n+ 2). 2



Midpoint Rule
For the midpoint formula, we take n = 0, then x−1 = a, x0 = (a+ b)/2, x1 = b.
Therefore, the interior point is only x0 = (a+ b)/2. When we work on the
interval [0, 1], change of intervals and method of undetermined coefficients,
we obtain that � 1

0
f(x)dx ∼= A0f

(
1

2

)
(2)

By the method of undetermined coefficients, we evaluate them on 1.

f(x) = 1 :

� 1

0
dx = A0 =⇒ A0 = 1
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Midpoint Rule
The resulting formula is � 1

0
f(x)dx ≈ f

(
1

2

)
(3)

By (??), we obtain that
� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du ∼= (b− a)A0f

(
λ

(
1

2

))
≈ (b− a)f

(
a+ b

2

)
If h = (b− a)/2, then

� b

a
f(x)dx ≈ 2hf(a+ h)
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Midpoint Rule

Theorem 1 (Error in Midpoint Rule)
If f ∈ C2[a, b], then the error in Midpoint rule is given by

(b− a)3

24
f ′′(ξ)

for some ξ ∈ (a, b)Proof: By Taylor polynomial about (a+ b)/2 for each x ∈ (a, b) is given by

f(x) = f

(
a+ b

2

)
+ f ′

(
a+ b

2

)(
x− a+ b

2

)
+

1

2
f ′′(ξ)

(
x− a+ b

2

)2
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Midpoint Rule
Integrating on both sides we obtain that

� b

a
f(x)dx = f

(
a+ b

2

)
(b− a) +

1

2
f ′

(
a+ b

2

)
�����������������:0[(

b− a+ b

2

)2

−
(
a− a+ b

2

)2
]

+
1

6
f ′′(ξ)

[(
b− a+ b

2

)3

−
(
a− a+ b

2

)3
]

= f

(
a+ b

2

)
(b− a) +

1

3
f ′′(ξ)

(
b− a

2

)3

Hence the proof.
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Two-Point Newton-Cotes Open Rule
For the Two-point formula, we take n = 1, then
x−1 = a, x0 = (a+ b)/3, x0 = 2(a+ b)/3, x2 = b. Therefore, the interior points
are only x0 = (a+ b)/3 and x1 = 2(a+ b)/3. When we work on the interval
[0, 1], change of intervals and method of undetermined coefficients, we obtain
that � 1

0
f(x)dx ∼= A0f

(
1

3

)
+A1f

(
2

3

)
(4)

7



Two-Point Newton-Cotes Open Rule
By the method of undetermined coefficients, we evaluate them on {1, x}.

f(x) = 1 :

� 1

0
dx = A0 +A1 =⇒ A0 +A1 = 1

f(x) = x :

� 1

0
xdx = A0

1

3
+A1

2

3
=⇒ 1

3
A0 +

2

3
A1 =

1

2

Solving for A0, A1, we obtain that A0 = 1/2, A1 = 1/2.
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Two-Point Newton-Cotes Open Rule
The resulting formula is

� 1

0
f(x)dx ≈ 1

2
f

(
1

3

)
+

1

2
f

(
2

3

)
(5)

By (??), we obtain that
� b

a
f(x)dx = (b− a)

� 1

0
f(λ(u))du

∼= (b− a)A0f

(
λ

(
1

3

))
+ (b− a)A1f

(
λ

(
2

3

))
≈ (b− a)

2

[
f

(
a+

b− a

3

)
+ f

(
a+ 2

b− a

3

)]
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Two-Point Newton-Cotes Open Rule
If h = (b− a)/3, then

� b

a
f(x)dx ≈ 3h

2
[f(a+ h) + f(a+ 2h)]
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Two-Point Newton-Cotes Open Rule

Theorem 2 (Error in Two-point Newton-Cotes Open Rule)
If f ∈ C2[a, b], then the error in Two-point rule is given by

(b− a)3

36
f ′′(ξ)

for some ξ ∈ (a, b)
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Midpoint Rule

Example 3
Evaluate � 1

0
e−x2

dx

using Midpoint rule.

a = 0, b = 1,
a+ b

2
= 0.5, f

(
a+ b

2

)
= 0.7788

� 1

0
e−x2

dx = (1− 0)f(0.5) = 0.7788

12



Two-Point Newton-Cotes Open Rule

Example 4
Using Two-Point Newton-Cotes open rule, the following numerical integration
can be obtained.

� 2

0
x2dx = 3−0

2 [49 + 16
9 ] =

10
3 , Et =

2

3� 3

0

1

1 + x
dx = 3−0

2 [0.5 + 1
3 ] = 1.25, Et = 0.1363

� 3

0

√
1 + x2dx = 3−0

2 [
√
2 +

√
5] = 5.0673, Et = −0.5853

� 3

0
exdx = 3−0

2 [e+ e2] = 15.16, Et = 3.9246
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Gaussian Quadrature
Using the change of interval λ : [−1, 1] → [a, b] as

λ(x) =
1

2
(b− a)x+

1

2
(a+ b)

we obtain that
� b

a
f(x)dx =

b− a

2

� 1

−1
f(λ(u))du

� b

a
f(x)dx ≈ b− a

2

[
f

(
λ

(
−1√
3

))
+ f

(
λ

(
1√
3

))]
=⇒

� b

a
f(x)dx ≈ b− a

2

[
f

(
a− b

2
√
3

+
1

2
(a+ b)

)
+ f

(
b− a

2
√
3

+
1

2
(a+ b)

)]

14



Example

Example 5
Determine the coefficientsA0, A1, A2 when the interval is [−2, 2] and the points
are −1, 0 and 1.

� 2

−2
f(x)dx ∼= A0f(−1) +A1f(0) +A2f(1) (6)
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Example
We use the polynomials {1, x, x2} to determine the coefficients

f(x) = 1 :

� 2

−2
dx = A0 +A1 +A2 =⇒ A0 +A1 +A2 = 4

f(x) = x :

� 2

−2
xdx = −A0 +A2 = 0 =⇒ A0 = A2

f(x) = x2 :

� 2

−2
x2dx = A0 +A2 =

16

3

=⇒ A0 = A2 =
8

3
=⇒ A1 = −4

3

16



Example
Therefore, � 2

−2
f(x)dx ∼=

8

3
f(−1)− 4

3
f(0) +

8

3
f(1) (7)

Verify! that the above formula produces exact values for all quadratic
polynomials.
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Some Open
Newton-Cotes Formula
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Some Open Newton-Cotes Formula
When n = 0, open Newton-Cotes formula provides Midpoint rule. Similarly,
when n = 1, it yields the two-point Newton-Cotes open rule. When n = 3, the
following three point Newton-Cotes open rule is obtained

� b

a
f(x)dx ≈ 4h

3
[2f(a+ h)− f(a+ 2h) + 2f(a+ 3h)]

with error as
E3(t) =

14

45
h5f (4)(ξ), ξ ∈ (a, b)
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Some Open Newton-Cotes Formula
When n = 4, we obtain the following four-point Newton-Cotes open rule

� b

a
f(x)dx ≈ 5h

24
[11f(a+ h) + f(a+ 2h) + f(a+ 3h) + 11f(a+ 4h)]

where the error is
E4(t) =

95

144
h5f (4)(ξ), ξ ∈ (a, b)
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Some Open Newton-Cotes Formula
When n = 5, we obtain the following five-point Newton-Cotes open rule
� b

a
f(x)dx ≈ 6h

20
[11f(a+ h)− 14f(a+ 2h) + 26f(a+ 3h)− 14f(a+ 4h) + 11f(a+ 5h)]

where the error is
E5(t) = − 41

140
h7f (6)(ξ), ξ ∈ (a, b)

The following theorem gives the general error term for an (n+ 1)-points
closed Newton-Cotes formula.
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Some Open Newton-Cotes Formula

Theorem 6
Suppose that

n∑
i=0

Aif(xi) denotes the open Newton-Cotes formula with x−1 =

a, xn+1 = b, x0 = a+h, xi = x0+ ih, i = 0, 1, 2, · · · , nwhere h = (b−a)/(n+2).
There exists ξ ∈ (a, b) for which

� b

a
f(x)dx =

n∑
i=0

Aif(xi) + En(t)

where the error is given by

En(t) =


hn+3

(n+ 2)!
f (n+2)(ξ)

� n+1

−1
t2(t− 1) · · · (t− n)dt n is even, f ∈ Cn+2

hn+2

(n+ 1)!
f (n+1)(ξ)

� n+1

−1
t(t− 1) · · · (t− n)dt n is odd, f ∈ Cn+1
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Composite Rules
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Composite Rules

• The Newton-Cotes formulas are generally unsuitable for use over large
integration intervals.

• High-degree formulas would be required and the values of these
formulas are difficult to obtain.

• Also, the Newton-Cotes formulas are based on interpolation polynomials
that use equally spaced nodes, a procedure that is inaccurate over large
intervals because of the oscillatory nature of high-degree polynomials,

• On the other hand, piecewise approach to numerical integration uses the
low-order Newton-Cotes formulas.

• These are the techniques most often applied.
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Composite Rules

Theorem 7
Suppose that c ∈ [a, b], then

� b

a
f(x)dx =

� c

a
f(x)dx+

� b

c
f(x)dx

If we subdivide the interval into n equal subintervals by points
x0 = a, x1 = a+ h, x2 = a+ 2h, · · · , xi = a+ ih, · · · , xn = b with spacing
h = (b− a)/n. Then by integration property, we have

� b

a
f(x)dx =

n−1∑
i=0

� xi+1

xi

f(x)dx
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Composite Rules
Then we can apply the basic rules in each subinterval [xi, xi+1], that is,

� xi+1

xi

f(x)dx =

m∑
j=0

Ajf(xj)

where m is the number of points considered in the Newton-Cotes rule in the
interval [xi, xi+1]. The general composite Newton-Cotes formula is given by

� b

a
f(x)dx =

n−1∑
i=0

m∑
j=0

Aijf(xij) (8)
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Composite trapezoidal Rule
The composite trapezoidal rule is obtained by keeping the m = 2 in (8). That
is, � xi+1

xi

f(x)dx ≈ h

2
[f(xi) + f(xi+1)]

and � b

a
f(x)dx ≈ h

2

n−1∑
i=0

[f(xi) + f(xi+1)] (9)
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Composite trapezoidal Rule
For each interval [xi, xi+1], the error is given by

Ei
t = −h3

12
f ′′(ξi)

Therefore, the error of the composite trapezoidal rule is obtained as

Et = −h3

12

n−1∑
i=0

f ′′(ξi) = O(h2)

The last equation is obtained by using the reason that

−h3

12

n−1∑
i=0

f ′′(ξi) = −h2

12
(b− a)

n−1∑
i=0

1

n
f ′′(ξi) = −b− a

12
h2f ′′(ζ)

for some ζ ∈ (a, b). 28



Composite trapezoidal Rule
The composite trapezoidal rule can also be written as

� b

a
f(x)dx ≈ h

n−1∑
i=1

f(xi) +
h

2
[f(a) + f(b)] (10)
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Composite trapezoidal Rule

Example 8
If the composite trapezoidal rule is to be used to compute

� 1

0
e−x2

dx

with an error of at most 1
2 × 10−4, how many points should be used?

Solution The error formula is

−b− a

12
h2f ′′(ζ)

Now,
f ′′(x) = (4x2 − 2)e−x2

Therefore,
|f ′′(ζ)| ≤ 2 30



Composite trapezoidal Rule
To have an error of at most 1

2 × 10−4, we must choose h such that

−1− 0

12
h22 ≤ 1

2
× 10−4 =⇒ h ≤ 0.01733

As h = 1/n, we need at least 59 or more points to obtain the desired accuracy.
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Composite Simpson’s 1/3 Rule
The composite Simpson’s 1/3 rule is obtained by keeping the m = 3 in (8).

� xi+1

xi

f(x)dx ≈ h

3
[f(xi) + 4f

(
xi + xi+1

2

)
+ f(xi+1)]

32



Composite Simpson’s 1/3 Rule
*Now choose n such that n is divisible by 2, then

� b

a
f(x)dx ≈ h

3

n−1∑
i=0

[f(xi) + 4f

(
xi + xi+1

2

)
+ f(xi+1)] (11)

For each interval [xi, xi+1], the error is given by

Ei
t = −h5

90
f (4)(ξi)
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Composite Simpson’s 1/3 Rule
Therefore, the error of the composite Simpson’s rule is obtained as

Et = −h5

90

n−1∑
i=0

f (4)(ξi) = O(h4)

When n is divisible by 2, the composite Simpson’s 1/3 rule can also be written
as

� b

a
f(x)dx ≈ 4

n/2∑
i=1

[f(a+(2i−1)h)]+4

(n−2)/2∑
i=1

[f(a+2ih)]+
h

3
[f(a)+f(b)] (12)
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Composite Simpson’s 1/3 Rule

Example 9
The calculation of work is an important equation in science and engineering.
The general formula is given by

Work = Force× Distance

Although, this formula seems to be simple, when apply this to realistic problem,
we obtain a complicated function. For example, when the force varies during
the course of calculation which results in

W =

� xn

x0

F (x)dx
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Composite Simpson’s 1/3 Rule
When the angle between the force and direction of the movement also varies
as a function of position, we obtain that

W =

� xn

x0

F (x) cos(θ(x))dx

The following table shows the force and angle as a function of position x.

x 0 5 10 15 20 25 30
F (x), N 0.0 9.0 13.0 14.0 10.5 12.0 5.0
θ(x), rad 0.50 1.40 0.75 0.90 1.30 1.48 1.50

Evaluate W using the Simpson’s 1/3 rule and composite Simpson’s 1/3 rules
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Composite Simpson’s 1/3 Rule
Solution:
By Simpson’s rule, we have h = (30− 0)/2

W =
15

3
[F (0) cos(θ(0)) + 4F (15) cos(θ(0.9)) + F (30) cos(θ(1.50))]

= 5[0 + 34.81 + 0.3537] = 175.82

By composite Simpson’s 1/3 rule, we have h = (30− 0)/6

W =
5

3
[F (0) cos(θ(0)) + 4F (5) cos(θ(1.4)) + F (10) cos(θ(0.75))]

+
5

3
[F (10) cos(θ(0.75)) + 4F (15) cos(θ(0.90)) + F (20) cos(θ(1.30))]

+
5

3
[F (20) cos(θ(1.30)) + 4F (25) cos(θ(1.48)) + F (30) cos(θ(1.50))]

= 117.13
37



Composite Midpoint Rule
Let f ∈ c2[a, b], n be even, h = (b− a)/(n+ 2) and xi = a+ (i+ 1)h for each
i = −1, 0, · · · , n+ 1. Then the composite midpoint rule is given by

� b

a
f(x)dx ≈ 2h

n/2∑
i=0

f(x2i) (13)

The error of the composite midpoint rule is given by

b− a

6
h2f ′′(ζ), ζ ∈ (a, b)

38



Romberg Integration
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Romberg Integration

• The idea behind Romberg integration is to successfully use the
trapezoidal rule with increasing intervals and stop as soon as the two
successive approximations agree to each other by a desired accuracy.

• The Romberg algorithm produces a triangular array of numbers, all of
which are numerical estimates of the definite integral

� b

a
f(x)dx

40



Romberg Integration
The array is denoted by the following notation

R(0, 0)
R(1, 0) R(1, 1)
R(2, 0) R(2, 1) R(2, 2)
R(3, 0) R(3, 1) R(3, 2) R(3, 3)
...

...
...

... . . .
R(n, 0) R(n, 1) R(n, 2) R(n, 3) · · · R(n, n)

The first column of this table is obtained by employing trapezoidal rule
recursively by decreasing values of the step size.
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Romberg Integration
The value R(n, 0) is obtained by applying the trapezoidal rule with 2n equal
subintervals. The value of R(0, 0) is obtained with one trapezoid

R(0, 0) =
1

2
(b− a)[f(a) + f(b)] (14)

Similarly, R(1, 0) is obtained with two trapezoids

R(1, 0) =
1

4
(b− a)[f(a) + f

(
a+ b

2

)
] +

1

4
(b− a)[f

(
a+ b

2

)
+ f(b)]

=
1

4
(b− a)[f(a) + f(b)] +

1

2
(b− a)f

(
a+ b

2

)
=

1

2
R(0, 0) +

1

2
(b− a)f

(
a+ b

2

)
42



Romberg Integration
In particular, the value of R(n, 0) is obtained by

R(n, 0) =
1

2
R(n− 1, 0) + h

2n−1∑
k=1

f(a+ (2k − 1)h)

The general R(m,n) is generated by the following extrapolation formula

R(n,m) = R(n,m− 1) +
1

4m − 1
[R(n,m− 1)−R(n− 1,m− 1)] (15)

This formula is obtained from Richardson extrapolation.
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Romberg Integration
We can stop this recursive computation with an accuracy of ϵ, when

|R(n, n)−R(n− 1, n− 1)| < ϵ

The error of the Romberg integration is given O(h2m+2).
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Romberg Integration

Example 10
Using the Romberg integration, obtain the result of

� 1

0

4

1 + x2
dx

with n = 5

3.000000
3.099999 3.133333
3.131176 3.141568 3.142117
3.138988 3.141592 3.141594 3.141585
3.140941 3.141592 3.141592 3.141592 3.141592
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Romberg Integration

Example 11
Using the Romberg integration, obtain the result of

� 1.5

1
x2 lnxdx

with n = 2
0.228071
0.201225 0.1922453
0.1944945 0.1922585 0.1922593
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Romberg Integration

• Romberg integration applied to a function f on the interval [a, b] relies on
the assumption that the Composite Trapezoidal rule has an error term
that can be expressed O(h2), that is, we must have f ∈ C2m+2[a, b] for
the mth row to be generated.

• General-purpose algorithms using Romberg integration include a check
at each stage to ensure that this assumption is fulfilled.

• These methods are known as cautious Romberg algorithms.
• This algorithm takes less time to compute and it is not difficult to write

the algorithm, however, it can not deal with unequally spaced intervals.
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panch.m@iittp.ac.in

48



MA633L-Numerical Analysis
Lecture 34 : Numerical Integration - Newton-Cotes

Panchatcharam Mariappan1

1Associate Professor
Department of Mathematics and Statistics

IIT Tirupati, Tirupati

April 7, 2025

48


