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Machine Epsilon
Let p denote the number of bits in the significand or fraction bits. Then, the
machine epsilon or the interval machine epsilon is

ε = 2−(p−1)

whereas the rounding machine epsilon is given by

ϵR = 2−p

Data Type p ε εR
Single (float) 24 1.19× 10−7 5.96× 10−8

Double (double) 53 2.22× 10−16 1.11× 10−16

Long Double (80-bit) 64 1.08× 10−19 5.4× 10−20

Long Double (128-bit) 113 1.93× 10−34 9.63× 10−35

Table 1: Machine epsilon values for common floating-point types.
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Overflow

• Without considering the sign of the digit, single, double and quadruple
precision floating points respectively can represent a finitely many values
in the interval [SPmin, SPmax], [DPmin, DPmax] and [QPmin, QPmax].

• In a computation, if a number x outside these interval occurs, then either
underflow or overflow occurs.

• If x is a single precision result and |x| ≥ SPmax, then it is called overflow.
• During the overflow, a few computers cease to function, whereas

standard codes are written to avoid overflow.
The same argument applies when x is double or quadruple precision with
their respective min and max values
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Underflow

• If |x| ≤ SPmin, then it is called underflow.
• For underflow, usually x = 0 is assigned and the computation continues.

The same argument applies when x is double or quadruple precision with
their respective min and max values.
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Machine Epsilon, Smallest/Largest Number

Aspect Machine Epsilon Smallest Number Largest Number
Definition Smallest difference Smallest normalized Largest normalized

between 1 and the positive number positive number
next representable number that can be represented that can be represented

Represents Precision of the floating The lower bound of The upper bound of
-point system representable numbers representable numbers

Significance Determines how Determines the Defines the
accurately numbers smallest non-zero largest value

can be stored value the system that can be
and computation can handle represented
can be performed without underflowing before overflow

Range Typically a very The lower limit The upper limit
small number, much smaller of the system’s of the system’s
than both the smallest and number range number range

largest numbers
Example ≈ 2.22E − 16 ≈ 2.22E − 308 ≈ 1.8E308
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Chopping
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Chopping
Chopoff errors occurs as digital computers cannot represent some quantities
exactly. They are important to engineering and scientific problems solving
because they can lead to erroneous results. In some cases, it can lead to
unstable results, said to be ill-conditioned. When a has a floating point
base-10 system representation,

a = ±m× 10n = ±0.d1d2 · · · dkdk+1dk+2 · · · × 10n (1)

and if we chop off the digits from dk+1, it produces

aC = ±m× 10n = ±0.d1d2 · · · dk × 10n (2)
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Chopping
Chopoff Rule: For chopping, we simply chop off all but the first k digits, to
obtain aC . Since, we are discarding all decimals from some decimal on, it is
also called as chopping error.

Etabs = |a− aC | ≈ |m−m| × 10n

= |0.d1d2 · · · dkdk+1dk+2 · · · − 0.d1d2 · · · dk| × 10n

= |0.dk+1dk+2 · · · | × 10n−k ≤ 10n−k

ϵt =

∣∣∣∣a− aC
a

∣∣∣∣ ≈ ∣∣∣∣m−m

m

∣∣∣∣ = |0.dk+1dk+2 · · · | × 10n−k

|0.d1d2 · · · dkdk+1dk+2 · · · | × 10n

≤ 10n−k

|0.d1d2 · · · dkdk+1dk+2 · · · | × 10n
≤ 1

0.1
10−k = 101−k
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Chopping
The last step is obtained as the numerator is bounded by 1, d1 ̸= 0 and the
minimal value of the denominator is 0.1

Definition 1 (Chopoff Error)
Let aC denote floating point approximation of a obtained by chopping the first
k-digits, then the chopoff rule gives the relative error as

ϵt =

∣∣∣∣a− aC
a

∣∣∣∣ ≈ ∣∣∣∣m−m

m

∣∣∣∣ ≤ 101−k.

The right side u = 101−k is called the chopping unit.
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Roundoff
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Roundoff
Similar to chopping, we can also, obtain the rounding off as follows:

aR = ±m× 10n = ±0.δ1δ2 · · · δk × 10n (3)

Here,

δk =

{
dk + 1 if dk+1 ≥ 5

dk if dk+1 < 5

aR =

{
±(0.d1d2 · · · dk × 10n + 10n−k) if dk+1 ≥ 5

±0.d1d2 · · · dk × 10n if dk+1 < 5

10



Roundoff
Roundoff Rule: For rounding, when dk+1 ≥ 5, we add 1 to dk and obtain δk and
chop off the rest, to obtain aR, we name it as round up. When dk+1 < 5, we
simply chop off all but the first rest k digits, to obtain aR, we name it as round
down.
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Roundoff

Example 2
In an Excel sheet, you can work with the following:
• ROUND(1.2535,1)=1.3
• ROUND(1.2535,2)=1.25
• ROUND(1.2535,3)=1.254
• ROUND(1.99999999,6)=2

12



Roundoff

Example 3
Find the five-digit (a) round and (b) chop off values of the irrational number π.
Solution: π = 3.14159265...

a = 0.314159265...× 101

(a)
Roundup = 0.31416× 101 = 3.1416

(b)
Chop = 0.31415× 101 = 3.1415
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Roundoff Error
If dk+1 < 5

Etabs = |a− aR| ≈ |m−m| × 10n

= |0.d1d2 · · · dkdk+1dk+2 · · · − 0.d1d2 · · · dk| × 10n

= |0.dk+1dk+2 · · · | × 10n−k ≤ 10n−k

ϵt =
∣∣a−aR

a

∣∣ ≈ ∣∣m−m
m

∣∣
=

|0.dk+1dk+2···|×10n−k

|0.d1d2···dkdk+1dk+2···|×10n

=
|0.dk+1dk+2···|

|0.d1d2···dkdk+1dk+2···| × 10−k

≤ 1
0.1 × 10−k = 101−k
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Roundoff Error
If dk+1 ≥ 5

Etabs = |a− aR| ≈ |m−m| × 10n

= |0.d1d2 · · · dkdk+1dk+2 · · · × 10n − 0.d1d2 · · · dk × 10n − 10n−k|
= |0.dk+1dk+2 · · · × 10n−k − 10n−k| ≤ 0.5× 10n−k

ϵt =
∣∣a−aR

a

∣∣ ≈ ∣∣m−m
m

∣∣
=

|0.dk+1dk+2···×10n−k−10n−k|
|0.d1d2···dkdk+1dk+2···×10n|

=
|0.dk+1dk+2···−1|

|0.d1d2···dkdk+1dk+2···| × 10−k

≤ 0.5
0.1 × 10−k = 1

2 × 101−k
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Roundoff Error

Definition 4 (Roundoff Error)
Let aR denote floating point approximation of a obtained by rounding the first
k-digits, then the roundoff rule gives the relative error as

ϵt =

∣∣∣∣a− aR
a

∣∣∣∣ ≈ ∣∣∣∣m−m

m

∣∣∣∣ ≤ 1

2
101−k.

The right side u = 1
210

1−k is called the rounding unit.
If we write aR = a(1 + δ), we have aR−a

a = δ. Therefore, |δ| ≤ u. This shows
that u is an error bound in rounding.
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Roundoff
Disadvantages:
• Rounding errors may ruin a computation completely, even a small

computation.
• Rounding errors can cause more dangerous problem when millions of

arithmetic operations are performed.
• Since digital computer have magnitude and precision limits on their

ability to represent numbers, roundoff can cause error when input data
are highly sensitive.
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Roundoff

Example 5
Obtain the ϵt for π = 3.14159265 for 3 digits, 4 digits and 5 digits.
Solution: π = 3.14159265

a = 0.314159265× 101

For, 3 digits
aR = 0.314× 101

=⇒ ϵt =
|0.314159265× 10− 0.314× 10|

0.314159265× 10
= 0.507× 10−5

For, 4 digits
aR = 0.3142× 101

=⇒ ϵt =
|0.314159265× 10− 0.3142× 10|

0.314159265× 10
= 0.1297× 10−5
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Roundoff

Example 6
For, 5 digits

aR = 0.31416× 101

=⇒ ϵt =
|0.314159265× 10− 0.31416× 10|

0.314159265× 10
= 0.236× 10−7
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Loss of Significant
Digits
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Loss of Significant Digits
Although, roundoff errors are inevitable and difficult to control, there are other
types of error in computation, that are under our control. A result of
calculation has a fewer correct digits than the number from which it was
obtained. Loss of significant digits can occur if two number of about the
same size, and produces large relative error. For example,
x = 0.3721478693, y = 0.3720230572, x− y = 0.0001248121

εt =
|xR − yR − x+ y|

|x− y|
= 0.04.

where 5 significant figures are used. This may occur in simple problems, but
it can be avoided in most cases by simple changes in algorithm. To avoid this
situations where accuracy can be jeopardized by a subtraction between
nearby quantities.
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Loss of Significant Digits

Theorem 7 (Loss of Precision Theorem)
If x and y are positive normalized floating point base-2 system such that x >
y > 0 and

2−q ≤ 1− y

x
≤ 2−p,

for some positive integers p and q, then at most q and at least p significant
binary digits are lost in subtraction x− y.

Proof: Exercise
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Loss of Significant Digits

Example 8
For example

y =
√
x2 + 1− 1

involves subtractive cancellation and loss of significance for small value of x.
Consider x = 10−3 and five-decimal digit arithmetic. You get y = 0. To avoid
this, we can rewrite it as

y =
√

x2 + 1− 1×
√
x2 + 1 + 1√
x2 + 1 + 1

=
x2√

x2 + 1 + 1

Now, we get y = 0.5× 10−6
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Loss of Significant Digits

Example 9
In the subtraction 37.593621 − 37.584216, how many bits of significant digits
are lost?
In the subtraction 0.6353− 0.6311, how many bits of significant digits are lost?
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Loss of Significant Digits

Example 10
How can accurate values of the function

f(x) = x− sin(x)

be computed near x = 0. Take x = 10−5

How can accurate values of the function

f(x) = ex − e−2x

be computed near x = 0. Take x = 10−5
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Truncation Error
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Truncation Error
Truncation errors are those that result from using an approximation of an
exact mathematical procedure. For example, the Taylor series for sin(x) is

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

In practice, it is not possible to use all of the infinite number of terms in the
series to compute the sine of angle x. We usually terminate the process after
a certain number of terms. The error that results due to such a termination or
truncation is called a ’truncation error’. Using Big O notation, we can express
this as

sinx = x− x3

6
+O(x5) (x → 0).
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Truncation Error
Usually in evaluating logarithms, exponentials, trigonometric functions,

hyperbolic functions etc., an infinite series of the form f(x) =
∞∑
i=0

aix
i is

replaced by a finite sum Pn(x) =
n∑

i=0
aix

i. Thus a truncation error of

Rn(x) =
∞∑

i=n+1
aix

i is introduced in the computation.
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Truncation Error

Example 11
Consider the evaluation of ex for the first three terms at x = 0.2

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ · · ·

ex ≃ 1 + x+
x2

2!

e0.2 ≃ 1 + 0.2 +
0.04

2
= 1.22
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Truncation Error

Example 12
Truncation Error

Rn(x) =
∞∑
i=3

xi

i!
=

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ · · ·

=
0.008

6
+

0.0016

24
+ · · ·

= 0.00133 + 0.000066 + · · ·
= 0.133× 10−2 + 0.0066× 10−2 + · · ·

∴ Truncation Error ≤ 10−2
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Error Propagation
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Error Propagation
The relative error ϵt seems useless when a is unknown. In this case, we
obtain in practice the error bound βt for ã, that is, there exists a βt such that

|ϵt| ≤ βt.

Similarly, for the absolute error, we have an error bound βtabs such that

|ϵtabs| ≤ βtabs.

It is another important concept in numerical analysis. It deals with how errors
at the beginning and in later steps propagate into the computation and affect
accuracy, sometimes dangerously.
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Error Propagation

Theorem 13
In addition and subtraction, an error bound for the results is given by the sum
of the error bounds for the terms.

Theorem 14
In multiplication and division, an error bound for the relative error of the results
is given (approximately) by the sum of the bounds for the relative errors of the
given numbers.
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Algorithm and Stability
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Algorithm and Stability

Definition 15 (Algorithm)
An algorithm is a list of unambiguous rules that specify successive steps to
solve a problem.
• Numerical methods can be formulated as algorithms
• An algorithm is a step-by-step procedure that expresses a numerical

method in a form (a pseudocode) understandable to humans.
• This algorithm is often used to write a program in a programming

language that computers can understand so that it can execute the
numerical method.
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Algorithm and Stability
Stable: An algorithm should be stable, that is, small changes in the initial
data should produce only small changes in the final results. If small changes
in the initial data produce a large changes in the final results, then the
algorithm is unstable.
Numerical instability can be avoided by choosing a better algorithm. Do not
confuse between mathematical instability (that is, ill-conditioning) with
numerical instability.
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Total Numerical Error
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Total Numerical Error

• The total numerical error is the summation of the truncation and
roundoff errors.

• To minimize the roundoff errors, one has to increase the number of
significant figures of the computer.

• As we have discussed, roundoff errors may increase due to subtractive
cancellation or due to an increase in the number of computations.

• Truncation error can be reduced by decreasing the step size (will be
discussed more detail in Finite Difference Method).
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Total Numerical Error

• A decrease in step size can lead to subtractive cancellation or to an
increase in computations.

• Truncation errors decrease as the roundoff errors are increased.
• Therefore, decreasing one component of the total error leads to an

increase of the other component.
• Thus, finding the appropriate size for a particular computation is a

challenging task.
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Total Numerical Error

Figure 1: Truncation and Roundoff trade-off
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panch.m@iittp.ac.in
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