
INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

MA635P-Scientific Programming Laboratory

Lab Exercise-1 (150 Marks) Deadline: 9 January 2025, 5:00 PM

Preliminaries

Definition 1 (Algorithm). An algorithm is a list of unambiguous rules that specify successive

steps to solve a problem

Definition 2 (Computer Program). The computer program is clearly specified sequence of

computer instructions implementing algorithm

Definition 3 (Elementary Operations). Most modern computers and languages build complex

programs from ordinary arithmetic and logical operations such as standard unary and binary

operations (negation, addition, subtraction, multiplication, division, modulo operations, assign-

ment), boolean operations, binary comparisons (=, >,<,≥,≤), branching operations. These

operations are called as elementary operations.

Definition 4 (Running Time). The running time or computing time of an algorithm is the

number of its elementary operations. It is denoted by T (n).

Example 1.1 (Sum of Elements of an array). Let a denote an array or list of integers where

the sum

s =
n−1∑
i=0

a[i]

is required. To get the sum s, we need to repeat n times the same elementary operations.

Therefore, the running time T (n) is proportional to or linear in n. That is T (n) = cn. This

algorithm is called linear algorithm. The unknown factor c depends on a particular computer,

programming language, compiler, OS etc.

In the above algorithm, suppose T (1) is given to you, then you can compute T (1000) =

1000T (1) = 10T (100). If per addition, it takes 1s, then T (1) = 1, then T (1000) = 1000s.

Example 1.2 (Sum of Elements of Subarrays). Now, let us compute the sum of each subarray

of some m. That is,

sj =
m−1∑
k=0

a[j + k], j = 0, 1, 2, · · · , n−m

How many subarrays? Prove that T2(n) = cm(n − m + 1). Also, if If m = n
2
, prove that

T2(n) = 0.25cn2 + 0.5cn = O(n2).

Exercise 1: Linear Sum, Quadratic: Slow/Fast Sum

Algorithm 1: Linear Sum

Input: array, a[0, 1, · · · , n− 1]

Output: s

1 s← 0

2 for i← 0 to n− 1 do

3 s← s+ a[i]

Algorithm 2: Quadratic Algorithms: Slow Sum

Input: array, a[0, 1, · · · , 2m− 1]

Output: s[0, 1, · · · ,m]

1 s← 0

2 for i← 0 to m do

3 s[i]← 0

4 for j ← 0 to m− 1 do

5 s[i]← s[i] + a[i+ j]

Algorithm 3: Quadratic algorithms: Fast Sum

Input: array, a[0, 1, · · · , 2m− 1]

Output: s[0, 1, · · · ,m]

1 s[0]← 0

2 for j ← 0 to m− 1 do

3 s[0]← s[0] + a[j]

4 for i← 1 to m do

5 s[i]← s[i− 1] + a[i+m− 1]− a[i− 1]

1. Write a Python/C++ function to compute the time taken to run a program in terms of

minutes and hours (Internet usage allowed)

2. Extend this function to display the time in terms of hours or minutes or seconds or

microseconds or milliseconds or nanoseconds or days or weeks or years depending the

number (Internet usage allowed). Save this function for future exercises. We will use this

function to get time taken by each program in the future (Internet usage allowed).

3. Write a Python/C++ program to implement algorithm 1, 2 and 3, generate random

entries for given n as in Table 1. Let T1(n), T2(n) and T3(n) be the running time for

algorithm 1, 2 and 3 respectively. For T2 and T3, take, m = n/2.

4. For each elementary operations (in this case, additions/subtractions only), compute re-

spective T1(n), T2(n) and T3(n). Fill the table of minutes and hours.

5. Estimate the value of c from the table

6. Compute the T1(10
12), T2(10

12) and T3(10
12) without doing the array sum operation.

[3 + 3 + 3 × 3 + 9 × 5 + 4 + 6 = 70]

n T1(n) Minutes Hours T2(n) Minutes Hours T3(n) Minutes Hours

100

500

1000

5000

50000

Tab. 1: T1(n), T2(n), T3(n)

Exercise 2 : Polynomials

Example 3.1 (Polynomials). Let a denote an array or list of real number and

s(x) =
n−1∑
i=0

aix
i

is required. Let T4(n) be the running time to compute s(x).

1. Write a Python/C++ program to compute s(x) for given x and n

2. Generate the list of real numbers for a and choose x = 0.1 and fill the below table

3. Compute the T4(10
12) without doing the array sum operation.

[3 + 5 × 3 + 2 = 20]

n T4(n) Minutes Hours

5

10

20

25

50

Tab. 2: T4(n)

Exercise 3 : Taylor Series

Example 4.1 (Taylor Series).

f(x) =
∞∑
i=0

(x− x0)
if

(i)(x0)

i!

• You can relate that this problem is similar to the above problem, where a[i] is given

by some mathematical expression. In order to compute the infinite sum, you require

enormous amount of sum and enormous amount of accuracy. Let us not do infinite sum,

instead, let us do a finite sum, for sufficiently large n, say fn(x).

Example 4.2 (Taylor Series - Truncated).

fn(x) =
n−1∑
i=0

(x− x0)
if

(i)(x0)

i!

Example 4.3 (Taylor Series - sinx Truncated).

S1(x) = sin x =
n−1∑
i=0

(−1)i x2i+1

(2i+ 1)!

1. Write a Python/C++ function create a factorial of any natural number. That is, i!

2. Write a Python/C++ function create a exponential power of any real number (x) for a

given i, that is, xi.

3. For given n and x, use the above two functions to compute the truncated sine series.

4. Compute the value of sin x using S1 and numpy library and compare it

5. Let T5(n, x) be running time for S1(x). Fill out the following table

x n S1(x) np.sin(x) T5(n, x) Seconds

π/2 20

π/4 20

π/6 20

π/3 20

π/3 50

Tab. 3: sin(x)

[3 + 3 + 3 + 3 + 7 × 4 = 40]

Exercise 4 : Norm of a Vector

Let

x = (x1, x2, · · · , xn)

be a vector in Rn.

∥x∥2 =

(
n∑

i=1

|xi|2
)1/2

∥x∥1 =
n∑

i=1

|xi|

The p− norm or ℓp norm of a vector is defined by

∥x∥pp =

(
n∑

i=1

|xi|p
)1/p

1. Compute each of the norms using Python/C++ function. Get the input n from the user,

generate a random vector between 0 and 1 of size n. Display the norm for all cases.

2. Use p = 3, p = 5 and p = 1/2 for testing. Compute the time requirement ∥x∥1, ∥x∥22, ∥x∥pp
when n = 1012.

[4 × 5 = 20]

Bonus : Taylor Series

1. Repeat the above exercise for the following series

S2(x) = cos x =
n−1∑
i=0

(−1)i x2i

(2i)!

S3(x) = ex =
n−1∑
i=0

xi

i!

S4(x) = tan−1 x =
n−1∑
i=0

(−1)i−1 x2i−1

2i− 1

1. Compute the value of cosx, ex and tan−1(x) using S2, S3 and S4. Also use numpy library

and compare it

2. Fill out tables 4, 5 and 6.

3. Use tan−1(x) to compute the value of π. Hint: 4× tan−1(1).

[2 + 7 × 4 + 2 + 7 × 4 + 2 + 6 × 4 + 4= 90]

x n S2(x) np.cos(x) T6(n, x) Seconds

π/3 20

π/4 20

π/6 20

π/2 20

Tab. 4: cos(x)

x n S3(x) np.exp(x) T7(n, x) Seconds

0 20

1 20

−1 20

0.1 20

Tab. 5: exp(x)

x n S4(x) np.atan(x) T8(n, x) Seconds

3 20

30 20

500 20

0.5 20

Tab. 6: tan−1(x)

Bonus : FLOPS for T1 to T8 (Paper Work)

1. Convert the table entries to years. How many years will take for Ti(n), i = 1, 2, · · · , 8 if

n = 106? [1 + 1 = 2]

2. Suppose your computer can perform 103 [kFLOPS] operations (additions/subtraction) in

1s, how many years will it take for finding the sum using algorithm 2 and algorithm 3,

when n = 109. [1 + 1 = 2]

3. Answer the above question 2, for 106 operations [MFLOPS], 109 operations [GFLOPS]

and 1012 operations [TFLOPS]. [2 + 2 + 2 = 6]

	Preliminaries
	Exercise 1: Linear Sum, Quadratic: Slow/Fast Sum
	Exercise 2 : Polynomials
	Exercise 3 : Taylor Series
	Exercise 4 : Norm of a Vector
	Bonus : Taylor Series
	Bonus : FLOPS for T1 to T8 (Paper Work)

