INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI DEPARTMENT OF MATHEMATICS AND STATISTICS

MA635P-Scientific Programming Laboratory

Lab Exercise-3 (30 Marks)Deadline: 23 January 2025, 5:00 PM

Group Exercise

- 1. Create an algorithm for Newton's interpolation method. [2.5]
- 2. Create an algorithm for Newton's backward/forward difference formula. [2.5]

Individual Exercise

- 3. Write a Python code to compute and plot the first 6 Taylor Polynomials with f(x) [5]
 - (a) about $x_0 = 1$ for f(x) = 1/x
 - (b) about $x_0 = 0$ for $f(x) = e^x$
- 4. Write a Python code for the developed algorithm for Newton's divided difference formula, Newton's interpolating polynomial, Newton's forward/backward difference formula including ε_t and test all examples of Lecture 9 and 10. [5]
- 5. Using Newton's divided difference formula and Newton's interpolating polynomial, Compute f(2.5), f(1.25) and f(3.25) using $P_3(x)$ and then compute f(2.5) using $P_4(x)$. [5]

6. Based on an experiment on heated plate, temperatures are measured at various points as given in below table. Estimate the temperature at (x, y) = (4, 3.2) and (x, y) = (4.3, 2.7) using Newton's interpolating polynomial $P_4(x)$. [5]

y	x = 0	x = 2	x = 4	x = 6	x = 8
0	100	90	80	70	60
2	85	64.49	53.5	48.15	50
4	70	48.9	38.43	35.03	40
6	55	38.78	30.39	27.07	30
8	40	35	30	25	20

7. Using Newton's forward/backward difference formula, compute $\cosh(0.56)$ and ε_t . [5]

x	0.5	0.6	0.7	0.8
f(x)	1.127626	1.185465	1.255169	1.337435