INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI DEPARTMENT OF MATHEMATICS AND STATISTICS

MA635P-Scientific Programming Laboratory

Lab Exercise-4 (30 Marks) Deadline: 30 January 2025, 5:00 PM

- 1. Create an algorithm for Lagrange's interpolation method. [2.5]
- 2. Create an algorithm for Hermite's interpolation method. [2.5]
- 3. Write a Python code for the developed algorithm for Lagrange's interpolation and ε_t and test all examples of Lecture 10 and 11. [5]
- 4. Based on an experiment on heated plate, temperatures are measured at various points as given in below table. Estimate the temperature at (x, y) = (4, 3.2) and (x, y) = (4.3, 2.7) using Lagrange's interpolating polynomial $P_4(x)$. [5]

y	x = 0	x = 2	x = 4	x = 6	x = 8
0	100	90	80	70	60
2	85	64.49	53.5	48.15	50
4	70	48.9	38.43	35.03	40
6	55	38.78	30.39	27.07	30
8	40	35	30	25	20

- 5. Write a Python code for the developed algorithm for Hermite interpolation test the example given in Lecture 12. [5]
- 6. Draw your hand in a piece of paper as instructions given in the class and get (x_i, y_i) at 20 locations from your graph. Use Newton's divided difference or Lagrange interpolation or Hermite interpolation to recreate the graph with as much smooth as possible accuracy. Observe the irregular hand-shape in the drawing and suggest any remedy for this. [10]