MA635P-Scientific Programming Laboratory

Trigonometric Polynomial Interpolation:

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

Deadline: March 16, 2025

Trigonometric Polynomial Interpolation:

Title of the Project

Trigonometric Polynomial Interpolation: Applications in Function Approximation and Signal Processing

Background

- Trigonometric polynomial interpolation is a powerful technique for approximating periodic functions using a sum of sine and cosine terms.
- Function approximation (better than standard polynomial interpolation for periodic functions).
- Machine learning (efficient feature representation for periodic data).

Objective

- Implement trigonometric interpolation for given periodic functions.
- Compare with standard polynomial interpolation (e.g., Lagrange interpolation).
- Analyze error and convergence properties of trigonometric polynomials.
- Apply the method to real-world problems, such as:
 - 1. Function approximation (e.g., interpolating sin(x), e^x , or noisy signals).
 - 2. Fourier-based signal processing (e.g., denoising and compression).
 - 3. Machine learning feature extraction (e.g., representing cyclic patterns).

Requirements

Read the following papers/Lecture Notes:

- 1. EXTENSION OF CHEBFUN TO PERIODIC FUNCTIONS
- 2. Trigonometric Polynomial Approximation

Steps to Solve

- 1. Generate Sample Data
 - 1.1 Use synthetic functions (e.g., $f(x) = \sin(x) + \cos(2x)$).
 - 1.2 Use real-world signals (e.g., ECG data, stock market trends).
- 2. Compute Trigonometric Interpolation
 - 2.1 Implement DFT-based coefficient computation.
 - 2.2 Use FFT (Fast Fourier Transform) for efficient computation.
- 3. Compare with Polynomial Interpolation
 - 3.1 Apply Lagrange and Chebyshev interpolation and compare errors.
 - 3.2 Demonstrate how trigonometric interpolation avoids Runge's phenomenon.

Deliverable

- 1. A Python-code for
- 2. A report on error analysis, comparison with polynomial interpolation and Runge's phenomenon
- 3. Identify a problem that has the applications

Team

Team

- MA23M004 BADAL KUMAR
- MA23M012 SARVJEET KUMAR SINGH
- MA23M020 ABHISHEK KUMAR YADAV
- MA23M016 AARTI JANGIR

Thanks

Doubts and Suggestions

panch.m@iittp.ac.in

MA635P-Scientific Programming Laboratory

Trigonometric Polynomial Interpolation:

Panchatcharam Mariappan¹

¹Associate Professor Department of Mathematics and Statistics IIT Tirupati, Tirupati

Deadline: March 16, 2025

