INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MAS517M-Basic Programming Laboratory Last Date: 09 November 2025
Name Roll No.: MA25M003

Matrix Battleship

Objective

The objective of this project is to design and implement a console-based version of the classic Battle-
ship game, but represented mathematically using a matrix grid. Players must use logical reasoning
and coordinate-based strategies to locate hidden “ships” on the matrix by guessing their positions.

This project enables students to:
e Apply the concept of matrices and coordinate systems computationally.
e Strengthen problem-solving and pattern-recognition skills.

e Gain hands-on practice with C++ data structures such as arrays, structures, and classes.

Mathematical Background

A two-dimensional matrix M € {0,1,2}™*"™ is used to represent the game board:

0, if the cell is empty,
M;; = <1, if the cell contains part of a ship,
2, if the cell has been hit or guessed.

Each coordinate (i,j) corresponds to a specific location in the grid. The player aims to find all
cells with value 1 (the hidden ships) through successive guesses.

The game can be viewed as a discrete mathematical model of a search problem on a finite grid.

Game Description

The computer initializes an n x n matrix (e.g., n = 5).

Randomly, a few cells (say, 3-5) are assigned value 1 to represent ship positions.

The rest of the matrix cells are initialized to 0.

The player does not see the full matrix — only the result of their guesses.

On each turn, the player enters coordinates (i, 7).

The program responds:

— HIT! if M;; = 1,

— MISS! if M;; =0,
— ALREADY GUESSED! if M;; = 2.

e The cell is then marked as 2 (guessed).

e The game continues until all ships are found or until the maximum number of guesses is reached.

Algorithm

1. Initialize:

e Matrix size n,
e Randomly assign a few ship locations.

e Set all other cells to zero.
2. While ships remain undiscovered and moves < max limit:

(a) Display partial grid with marks for guessed cells.
(b) Read player input (3, 7).

(
(

)
)
c¢) If M;; =1, mark it as 2 and increment hits.
)
)
)

d) If M;; =0, mark it as 2 and show “MISS!”.
(e) If M;; =2, show “ALREADY GUESSED!”.
(f) Display the updated matrix state.

3. If all ships are found, display “Congratulations, you sank all ships!”.

4. Otherwise, display “Game Over”.

Program Structure (C++ Skeleton)

struct Matrix {
int grid[5] [5];
int n;

};

class MatrixBattleship {
private:
Matrix board;
int numShips;
int hits;
int moves;
public:
void initialize();
void displayMasked();
bool guess(int i, int j);
bool allShipsSunk();

void play();
};
Sample Interaction

Output:
Welcome to Matrix Battleship!
Grid Size: 5 x 5

Total Ships: 3
You have 10 attempts to sink them all.

Enter coordinates (row column): 2 3
MISS!

Enter coordinates (row column): 1 4
HIT!

Current Grid:
X .

L D e BN e B et N s |
| NNy N D Y S |

Ships remaining: 2

Attempts left: 8
Legend:
e . — unguessed cell

e 0 — missed guess

X — hit

Possible Extensions

Implement computer-vs-player mode (Al guessing).

Add multiple ship sizes (occupying adjacent cells).

Introduce scoring or difficulty levels.

Use dynamic matrix allocation for variable grid sizes.

Project - 2: 2048 Game Using C++ Classes

Problem Statement

Design and implement the popular 2048 Game using C++ classes. The program should simulate
the 4 x 4 sliding tile game where the player combines numbers by sliding them in four directions to
reach the tile with value 2048. The project should utilize object-oriented programming concepts such

as classes, objects, encapsulation, and methods for handling game logic and user interaction.

Project Requirements
1. Create a Board class to represent the 4 x 4 game grid.

) Include a method to initialize the board with two random tiles of 2 or 4.

b) Include a method to generate a new random tile in an empty position after each move.

(¢) Include a method to display the current board in a nicely formatted way.
)

(a
(

(d) Include a method to check for the game over condition.
2. Create a Game class to manage gameplay.

(a) Display options for the user: Play or Solution.
(b) If the user chooses Play, show the navigation commands:
e W/w for Up
e S/s for Down
e A/a for Left
e D/d for Right
e Q/q for Quit
(¢) When the user presses Q/q, confirm before quitting.
(d) For each move, merge tiles according to 2048 rules and update the board.

(e) Display the board after each move.

3. If the user chooses Solution, demonstrate a sequence of moves that leads to a high-value tile
(e.g., 2048).

4. Ensure proper encapsulation of game logic and board operations within the respective classes.

Suggested Class Structure
1. Board Class:

e Data member: 4 x 4 integer array representing tiles

e Methods: initializeBoard(), addRandomTile(), displayBoard(), isGameOver(), mergeTiles(char

direction)
2. Game Class:

e Data member: Board object, user choice, score

e Methods: playGame(), showSolution(), processMove(char move), confirmQuit()

