INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MAS517M-Basic Programming Laboratory Last Date: 09 November 2025
Name Roll No.: MA25M004

Relations

1. Design a C++ class Vector that represents a mathematical vector with double precision ele-

ments. Implement member functions to:

e Input and display the vector elements.

e Compute the outer product with another vector to form a Matrix object.

Mathematically,
U1 U1 U1v1 U2 - UlUn
U2 V2 T U1 U2 -+ UUp
u = . s v = . s — U ® v e
Um Un UmV1 UMV2 -+ UmUnp

Here m # n.

2. Add a member function to the Vector class that computes the 1-norm of a vector using recur-

m
el = 3
=1

3. Design a second class Matrix that stores an m x n matrix and implements:

sion:

e Input and display of the matrix elements.

e Computation of the 1-norm (column-sum-norm):

m
All1 = max ;i
4l = max > Ja|
=1
4. Overload the comparison operators <, >, and == to compare the following quantities:

fu@vls and lufilv];

so that the statement
if (OuterProductMatrix < ProductOfNorms)

returns true if |Ju ® v7 |1 < ||ul|1||v]|1, and similarly for the other relations.

Use the following data for testing:

0.9575
0.8147
0.9649
0.9058
U = , v=1[0.1576 |, (m=4,n=25)
0.1270
0.9706
0.9134

0.9572

5. Extend the Matrix class to include a function that solves the linear system
Az =10
using the Jacobi iterative method. The function should:

e Accept a vector b as input,
e Initialize x with zeros,

e Iterate until convergence or a fixed number of iterations.

Display the solution vector z and verify the residual norm || Az — b||2.

Project - 2: Conway’s Game of Life Using C++ Classes

Problem Statement

Design and implement Conway’s Game of Life using C++ classes. This is a zero-player game
where the evolution of a 2D grid is determined by its initial state and simple rules. Each cell in the
grid can be alive or dead, and the next generation of the grid is calculated based on the number of alive
neighbors. The project should utilize object-oriented programming concepts such as classes, objects,

encapsulation, and methods for handling game logic and grid updates.

Project Requirements
1. Create a Cell class to represent a single cell in the grid.

(a) Data member: current state (alive or dead)

(b) Methods: setState(), getState()
2. Create a Grid class to represent the game board (matrix).

(a) Initialize the grid with random alive and dead cells.

(b) Include a method to display the current state of the grid.

(¢) Include a method to count alive neighbors for each cell.

(d) Include a method to update the grid according to the following rules:

e Any live cell with fewer than two live neighbors dies (underpopulation).
e Any live cell with two or three live neighbors lives on.
e Any live cell with more than three live neighbors dies (overpopulation).

e Any dead cell with exactly three live neighbors becomes alive (reproduction).
3. Create a Game class to manage simulation.

a) Display options for the user: Start, Next Generation, or Quit.

(a)
(b) Allow the user to advance the simulation one generation at a time.
(c) Allow the user to quit and confirm before exiting.

)

(d) Optionally, allow the user to specify the number of generations to simulate automatically.

4. Ensure proper encapsulation of cell and grid operations within the respective classes.

Suggested Class Structure

1. Cell Class:

e Data member: bool isAlive

e Methods: setState(bool state), getState()
2. Grid Class:

e Data member: 2D array of Cell objects

e Methods: initializeGrid(), displayGrid(), countAliveNeighbors(int row, int col), update-
Grid()

3. Game Class:
e Data member: Grid object, user choice, generation counter

e Methods: startGame(), nextGeneration(), confirmQuit()

Reference

For more details about Conway’s Game of Life, visit: https://en.wikipedia.org/wiki/Conway’s_

Game_of_Life

https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://en.wikipedia.org/wiki/Conway's_Game_of_Life

