
INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MA517M-Basic Programming Laboratory Last Date: 09 November 2025

Name Roll No.: MA25M006

Geometric Random Variables using C++ Classes and Operator

Overloading

Objective: To design a C++ program that implements geometric random variables using classes,

computes PMF, CDF, mean, variance, and supports operator overloading for comparison and arith-

metic.

A geometric random variable X ∼ Geom(p) counts the number of Bernoulli trials until the

first success, with success probability p.

The probability mass function (PMF) is

P (X = k) = (1− p)k−1p, k = 1, 2, 3, . . .

The cumulative distribution function (CDF) is

F (k) = P (X ≤ k) = 1− (1− p)k

Mean and variance:

E[X] =
1

p
, Var(X) =

1− p

p2

Problem Description

Design a class GeometricRV to represent a geometric random variable. The class should allow com-

putation of PMF, CDF, mean, variance, comparison with other geometric random variables, and

arithmetic operations (such as addition of independent variables).

Class Specification

• Class Name: GeometricRV

• Private Data Members:

– double p;

• Public Member Functions:

– GeometricRV(double prob);

– double pmf(int k) const;

– double cdf(int k) const;

– double mean() const;

– double variance() const;

– void display() const;



Operator Overloading

• operator +() Adds two independent geometric random variables (sum of trials until first success

for each)

• operator ==(), !=(), <(), >() Compares mean or variance of two geometric random vari-

ables

• operator <<() Displays the geometric variable’s parameters and statistics

Tasks

1. Create geometric random variables X ∼ Geom(0.3) and Y ∼ Geom(0.5)

2. Compute PMF and CDF for selected values

3. Compute mean and variance

4. Compute X + Y assuming independence

5. Compare X and Y using overloaded comparison operators

6. Display all results using the overloaded << operator

Expected Output Example

X ~ Geom(0.3)

PMF P(X=3) = 0.147

CDF P(X<=3) = 0.657

Mean = 3.333, Variance = 7.778

Y ~ Geom(0.5)

PMF P(Y=2) = 0.25

CDF P(Y<=2) = 0.75

Mean = 2.0, Variance = 2.0

X + Y (independent) = Geometric sum with mean 5.333, variance 9.778

X > Y : True

X == Y: False

Project - 2: Match-3 Game (Candy Crush Variant) Using C++

Classes

Problem Statement

Design and implement a Match-3 Game using C++ classes. The game consists of a grid of colored

tiles (or symbols), where the player swaps adjacent tiles to form a sequence of three or more identical

tiles in a row or column. When a match is formed, the tiles disappear, points are awarded, and new



tiles fall from the top to fill empty spaces. The project should utilize object-oriented programming

concepts such as classes, objects, encapsulation, and methods to handle grid updates, scoring, and

user interaction.

Project Requirements

1. Create a Tile class to represent an individual tile in the grid.

(a) Data member: type or color of the tile.

(b) Methods: getType(), setType().

2. Create a Board class to represent the game grid.

(a) Initialize the grid with random tiles.

(b) Display the current state of the grid in a readable format.

(c) Detect and remove matches of three or more tiles in a row or column.

(d) Drop new tiles from the top to fill empty spaces.

(e) Include a method to check if possible moves exist.

3. Create a Game class to manage gameplay.

(a) Display options for the user: Play or Solution.

(b) Allow the user to swap adjacent tiles using input commands.

(c) Keep track of the player’s score.

(d) Allow the user to quit and confirm before exiting.

(e) Optionally, allow the user to reset the board or play multiple rounds.

4. Ensure proper encapsulation of tile and board operations within the respective classes.

Suggested Class Structure

1. Tile Class:

• Data member: int type or char color

• Methods: getType(), setType()

2. Board Class:

• Data member: 2D array of Tile objects

• Methods: initializeBoard(), displayBoard(), detectMatches(), removeMatches(), dropTiles(),

hasPossibleMoves()

3. Game Class:

• Data member: Board object, user choice, score

• Methods: playGame(), showSolution(), processSwap(int row1, int col1, int row2, int col2),

confirmQuit(), resetBoard()



Reference

For more details about Match-3 games and mechanics, visit: https://en.wikipedia.org/wiki/

Tile-matching_video_game

https://en.wikipedia.org/wiki/Tile-matching_video_game
https://en.wikipedia.org/wiki/Tile-matching_video_game

	Geometric Random Variables using C++ Classes and Operator Overloading

