INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
DEPARTMENT OF MATHEMATICS AND STATISTICS

Project -1  MAS517M-Basic Programming Laboratory Last Date: 09 November 2025
Name Roll No.: MA25M006

Geometric Random Variables using C++ Classes and Operator

Overloading

Objective: To design a C++ program that implements geometric random variables using classes,
computes PMF, CDF, mean, variance, and supports operator overloading for comparison and arith-

metic.

A geometric random variable X ~ Geom(p) counts the number of Bernoulli trials until the

first success, with success probability p.

The probability mass function (PMF) is

P(X=k=1-prlp k=123,...

The cumulative distribution function (CDF) is

F(k)=P(X <k)=1-(1-p)"

Mean and variance:

Problem Description
Design a class GeometricRV to represent a geometric random variable. The class should allow com-
putation of PMF, CDF, mean, variance, comparison with other geometric random variables, and
arithmetic operations (such as addition of independent variables).
Class Specification

e Class Name: GeometricRV

e Private Data Members:

— double p;

e Public Member Functions:

GeometricRV(double prob);
— double pmf (int k) const;

double cdf(int k) const;

— double mean() const;

double variance() const;

— void display() const;



Operator Overloading

e operator +() Addstwo independent geometric random variables (sum of trials until first success

for each)

e operator ==(), !'=(0), <O, >0 Compares mean or variance of two geometric random vari-

ables

e operator <<() Displays the geometric variable’s parameters and statistics

Tasks

1. Create geometric random variables X ~ Geom(0.3) and Y ~ Geom(0.5)
2. Compute PMF and CDF for selected values

3. Compute mean and variance

4. Compute X + Y assuming independence

5. Compare X and Y using overloaded comparison operators

6. Display all results using the overloaded << operator

Expected Output Example

X ~ Geom(0.3)

PMF P(X=3) = 0.147

CDF P(X<=3) = 0.657

Mean = 3.333, Variance = 7.778

Y ~ Geom(0.5)
PMF P(Y=2) = 0.25
CDF P(Y<=2) = 0.75

Mean = 2.0, Variance = 2.0
X + Y (independent) = Geometric sum with mean 5.333, variance 9.778

X >Y : True
X == Y: False

Project - 2: Match-3 Game (Candy Crush Variant) Using C++

Classes

Problem Statement

Design and implement a Match-3 Game using C++ classes. The game consists of a grid of colored
tiles (or symbols), where the player swaps adjacent tiles to form a sequence of three or more identical

tiles in a row or column. When a match is formed, the tiles disappear, points are awarded, and new



tiles fall from the top to fill empty spaces. The project should utilize object-oriented programming
concepts such as classes, objects, encapsulation, and methods to handle grid updates, scoring, and

user interaction.
Project Requirements

1. Create a Tile class to represent an individual tile in the grid.

(a) Data member: type or color of the tile.

(b) Methods: getType(), setType().
2. Create a Board class to represent the game grid.

Initialize the grid with random tiles.

(a
(

b) Display the current state of the grid in a readable format.

d

)
)
(¢) Detect and remove matches of three or more tiles in a row or column.
(d) Drop new tiles from the top to fill empty spaces.

)

(e) Include a method to check if possible moves exist.
3. Create a Game class to manage gameplay.

a) Display options for the user: Play or Solution.

(
(b

Allow the user to swap adjacent tiles using input commands.

(
(d

)
)
c) Keep track of the player’s score.
) Allow the user to quit and confirm before exiting.
)

(e) Optionally, allow the user to reset the board or play multiple rounds.

4. Ensure proper encapsulation of tile and board operations within the respective classes.

Suggested Class Structure

1. Tile Class:

e Data member: int type or char color

e Methods: getType(), setType()
2. Board Class:

e Data member: 2D array of Tile objects
e Methods: initializeBoard(), displayBoard(), detectMatches(), removeMatches(), dropTiles(),
hasPossibleMoves|()

3. Game Class:

e Data member: Board object, user choice, score

e Methods: playGame(), showSolution(), processSwap(int rowl, int coll, int row2, int col2),
confirmQuit(), resetBoard()



Reference

For more details about Match-3 games and mechanics, visit: https://en.wikipedia.org/wiki/

Tile-matching_video_game


https://en.wikipedia.org/wiki/Tile-matching_video_game
https://en.wikipedia.org/wiki/Tile-matching_video_game

	Geometric Random Variables using C++ Classes and Operator Overloading

