INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MAS517M-Basic Programming Laboratory Last Date: 09 November 2025
Name Roll No.: MA25M012

Integer Partitions using C++4 Classes and Operator Overloading

Objective: To design a C++ program that implements integer partitions using classes, generates all

partitions, counts them, and supports comparison using operator overloading.

A partition of a positive integer n is a way of writing n as a sum of positive integers,

without considering the order of the summands. For example, the partitions of 4 are:

4,341,242, 241+1,14+1+1+41

Problem Description

Design a class IntegerPartition to represent partitions of a positive integer. The class should
generate all partitions, count the total number of partitions, access individual partitions, and support
comparison between partitions using operator overloading.

Class Specification

e Class Name: IntegerPartition
e Private Data Members:

— int n;

— vector<vector<int>> partitions;
e Public Member Functions:

— IntegerPartition(int x); Constructor initializes partitions of x

— void generate(); Generates all partitions of n

— int count() const; Returns the total number of partitions

— vector<int> getPartition(int k) const; Returns the k-th partition

— void display() const; Displays all partitions

Operator Overloading

e operator ==(), !=() Compares two partitions (exact equality of all summands)
e operator [] Accesses the k-th partition

e operator <<() Displays all partitions in a readable form



Tasks

1. Create an IntegerPartition object for n =5

2. Generate all partitions and display them

3. Count the total number of partitions

4. Access and display the 3rd partition using overloaded operator []

5. Compare two partition objects for equality

Expected Output Example

Partitions of 5:

5

4 +1

3+ 2
3+1+1

2 +2+ 1
2+1+1+1
1+1+1+1+1

Total number of partitions = 7
3rd partition = 3 + 2

Comparison of Partitionl and Partition2: False

Project - 2: Match-3 Game (Candy Crush Variant) Using C++

Classes

Problem Statement

Design and implement a Match-3 Game using C++ classes. The game consists of a grid of colored
tiles (or symbols), where the player swaps adjacent tiles to form a sequence of three or more identical
tiles in a row or column. When a match is formed, the tiles disappear, points are awarded, and new
tiles fall from the top to fill empty spaces. The project should utilize object-oriented programming
concepts such as classes, objects, encapsulation, and methods to handle grid updates, scoring, and

user interaction.

Project Requirements

1. Create a Tile class to represent an individual tile in the grid.

(a) Data member: type or color of the tile.

(b) Methods: getType(), setType().

2. Create a Board class to represent the game grid.



Initialize the grid with random tiles.

(a
(

b) Display the current state of the grid in a readable format.

d

)
)
(c) Detect and remove matches of three or more tiles in a row or column.
(d) Drop new tiles from the top to fill empty spaces.

)

(e) Include a method to check if possible moves exist.
3. Create a Game class to manage gameplay.

(
(

a) Display options for the user: Play or Solution.

b) Allow the user to swap adjacent tiles using input commands.

d

)
)

(¢) Keep track of the player’s score.

(d) Allow the user to quit and confirm before exiting.
)

(e) Optionally, allow the user to reset the board or play multiple rounds.

4. Ensure proper encapsulation of tile and board operations within the respective classes.

Suggested Class Structure

1. Tile Class:

e Data member: int type or char color

e Methods: getType(), setType()
2. Board Class:

e Data member: 2D array of Tile objects

e Methods: initializeBoard(), displayBoard(), detectMatches(), removeMatches(), dropTiles(),
hasPossibleMoves()

3. Game Class:

e Data member: Board object, user choice, score

e Methods: playGame(), showSolution(), processSwap(int rowl, int coll, int row2, int col2),
confirmQuit(), resetBoard()
Reference

For more details about Match-3 games and mechanics, visit: https://en.wikipedia.org/wiki/

Tile-matching_video_game


https://en.wikipedia.org/wiki/Tile-matching_video_game
https://en.wikipedia.org/wiki/Tile-matching_video_game

