INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MA517M-Basic Programming Laboratory Last Date: 09 November 2025 Name Roll No.: MA25M014

Polynomial Class with Integer or Finite Field Coefficients using C++ Classes

Objective: To design a C++ program that implements polynomials with integer or finite field coefficients, supports arithmetic operations, evaluation, derivation, and demonstrates operator overloading.

A polynomial of degree n is of the form

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

where $a_i \in \mathbb{Z}$ or $a_i \in GF(p)$ (finite field of order p). Operations include addition, subtraction, multiplication, evaluation at a point, derivation, and comparison of polynomials.

Problem Description

Design a class Polynomial to represent polynomials with integer or finite field coefficients. The class should support arithmetic operations, evaluation at a point, derivation, and equality comparison using operator overloading.

Class Specification

- Class Name: Polynomial
- Private Data Members:
 - int degree;
 - vector<int> coeffs;
 - int modulus;
- Public Member Functions:
 - Polynomial(vector<int> c, int p=0); Constructor initializes polynomial with coefficients and modulus
 - Polynomial derivative() const; Returns derivative polynomial
 - int evaluate(int x) const; Evaluates polynomial at given $x \pmod{p}$ if finite field)
 - void display() const; Displays polynomial in standard form

Operator Overloading

- operator +(), -() Polynomial addition and subtraction
- operator *() Polynomial multiplication
- operator ==() Compares two polynomials
- operator <<() Displays polynomial in readable form

Tasks

- 1. Create polynomials $P_1(x) = 1 + 2x + 3x^2$ and $P_2(x) = 3 + x + 4x^3$ over integers or GF(5)
- 2. Compute $P_1 + P_2$, $P_1 P_2$, $P_1 * P_2$
- 3. Evaluate P_1 and P_2 at x=2
- 4. Compute derivatives P'_1 and P'_2
- 5. Compare polynomials using the overloaded equality operator

Expected Output Example

```
P1(x) = 1 + 2x + 3x^2

P2(x) = 3 + 1x + 0x^2 + 4x^3 \pmod{5}

P1 + P2 = 4 + 3x + 3x^2 + 4x^3 \pmod{5}

P1 - P2 = 3 + 1x + 3x^2 + 1x^3 \pmod{5}

P1 * P2 = 3 + 0x + 3x^2 + 3x^3 + 2x^4 + 2x^5 \pmod{5}

P1(2) = 3 (mod 5)

P2(2) = 0 (mod 5)

Derivative P1' = 2 + 6x

Derivative P2' = 1 + 12x^2

P1 == P2 : False
```

Project - 2: Connect Four Using C++ Classes

Problem Statement

Design and implement **Connect Four** using C++ classes. Connect Four is a two-player game where players take turns dropping colored discs into a vertical 6×7 grid. The goal is to connect four discs in a row, column, or diagonal before the opponent does. The project should utilize object-oriented programming concepts such as classes, objects, encapsulation, and methods for handling game logic and player interaction.

Project Requirements

- 1. Create a Disc class to represent an individual disc.
 - (a) Data member: color or player identifier.
 - (b) Methods: getColor(), setColor().
- 2. Create a Board class to represent the game grid.
 - (a) Initialize a 6×7 grid with empty slots.
 - (b) Display the current state of the grid in a readable format.
 - (c) Include a method to drop a disc into a specified column.
 - (d) Include a method to check for a winning condition (four connected discs horizontally, vertically, or diagonally).
 - (e) Include a method to check if the board is full (draw condition).
- 3. Create a Game class to manage gameplay.
 - (a) Allow two players to take turns dropping discs.
 - (b) Display options for the user: Play or Solution.
 - (c) After each move, update the board and display it.
 - (d) Allow the user to quit and confirm before exiting.
 - (e) Keep track of player turns and optionally score.
- 4. Ensure proper encapsulation of disc and board operations within the respective classes.

Suggested Class Structure

- 1. Disc Class:
 - Data member: char color or int playerID
 - Methods: getColor(), setColor()
- 2. Board Class:
 - Data member: 2D array of Disc objects
 - Methods: initializeBoard(), displayBoard(), dropDisc(int column, Disc disc), checkWin(), isFull()
- 3. Game Class:
 - Data member: Board object, currentPlayer, user choice
 - Methods: playGame(), showSolution(), switchPlayer(), confirmQuit()

Reference

For more details about Connect Four, visit: https://en.wikipedia.org/wiki/Connect_Four