
INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MA517M-Basic Programming Laboratory Last Date: 09 November 2025

Name Roll No.: MA25M019

Quaternion Arithmetic using C++ Classes and Operator

Overloading

Objective: To design a C++ program that implements quaternions using classes, supports arithmetic

operations, and demonstrates operator overloading.

A quaternion is an extension of complex numbers:

q = a+ b i+ c j + d k

where a, b, c, d ∈ R, and i, j, k satisfy

i2 = j2 = k2 = ijk = −1, ij = k, ji = −k, . . .

Quaternions are used in 3D rotations and physics, and their multiplication is non-commutative.

Problem Description

Design a class Quaternion that represents quaternions. The class should support addition, sub-

traction, multiplication, division (by the norm squared), conjugation, and equality comparison using

operator overloading.

Class Specification

• Class Name: Quaternion

• Private Data Members:

– double a, b, c, d; // real and imaginary components

• Public Member Functions:

– Quaternion(double a=0, double b=0, double c=0, double d=0); Constructor initial-

izes the quaternion

– double norm() const; Computes ∥q∥ =
√
a2 + b2 + c2 + d2

– Quaternion conjugate() const; Returns q̄ = a− bi− cj − dk

– void display() const; Displays quaternion in a+ bi+ cj + dk form



Operator Overloading

• operator +(), -() Addition and subtraction component-wise

• operator *() Quaternion multiplication using the rules:

ij = k, ji = −k, jk = i, . . .

• operator /() Division using inverse: q1/q2 = q1 ∗ q−1
2

• operator ==() Checks the equality of two quaternions

Tasks

1. Create quaternions q1 = 1 + 2i+ 3j + 4k and q2 = 2− i+ k

2. Compute q1 + q2, q1 − q2, q1 ∗ q2, q1/q2

3. Compute norms and conjugates of q1 and q2

4. Compare q1 and q2 using equality operator

Expected Output Example

q1 = 1 + 2i + 3j + 4k

q2 = 2 - i + 0j + 1k

q1 + q2 = 3 + 1i + 3j + 5k

q1 - q2 = -1 + 3i + 3j + 3k

q1 * q2 = -12 + 4i + 10j + 4k

q1 / q2 = 0.44 + 1.11i + 0.67j + 0.22k

Norm of q1 = 5.477

Conjugate of q1 = 1 - 2i - 3j - 4k

q1 == q2 : False

Project - 2: Conway’s Game of Life Using C++ Classes

Problem Statement

Design and implement Conway’s Game of Life using C++ classes. This is a zero-player game

where the evolution of a 2D grid is determined by its initial state and simple rules. Each cell in the

grid can be alive or dead, and the next generation of the grid is calculated based on the number of alive

neighbors. The project should utilize object-oriented programming concepts such as classes, objects,

encapsulation, and methods for handling game logic and grid updates.



Project Requirements

1. Create a Cell class to represent a single cell in the grid.

(a) Data member: current state (alive or dead)

(b) Methods: setState(), getState()

2. Create a Grid class to represent the game board (matrix).

(a) Initialize the grid with random alive and dead cells.

(b) Include a method to display the current state of the grid.

(c) Include a method to count alive neighbors for each cell.

(d) Include a method to update the grid according to the following rules:

• Any live cell with fewer than two live neighbors dies (underpopulation).

• Any live cell with two or three live neighbors lives on.

• Any live cell with more than three live neighbors dies (overpopulation).

• Any dead cell with exactly three live neighbors becomes alive (reproduction).

3. Create a Game class to manage simulation.

(a) Display options for the user: Start, Next Generation, or Quit.

(b) Allow the user to advance the simulation one generation at a time.

(c) Allow the user to quit and confirm before exiting.

(d) Optionally, allow the user to specify the number of generations to simulate automatically.

4. Ensure proper encapsulation of cell and grid operations within the respective classes.

Suggested Class Structure

1. Cell Class:

• Data member: bool isAlive

• Methods: setState(bool state), getState()

2. Grid Class:

• Data member: 2D array of Cell objects

• Methods: initializeGrid(), displayGrid(), countAliveNeighbors(int row, int col), update-

Grid()

3. Game Class:

• Data member: Grid object, user choice, generation counter

• Methods: startGame(), nextGeneration(), confirmQuit()

Reference

For more details about Conway’s Game of Life, visit: https://en.wikipedia.org/wiki/Conway’s_

Game_of_Life

https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://en.wikipedia.org/wiki/Conway's_Game_of_Life

	Quaternion Arithmetic using C++ Classes and Operator Overloading

