INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MA517M-Basic Programming Laboratory Last Date: 09 November 2025
Name Roll No.: MA25M101

Finite Field Construction using C++4 Classes and Operator

Overloading

Objective: To design a C++ program that implements arithmetic in a finite field (Galois Field

GF(p)) using classes, encapsulation, and operator overloading.

A finite field GF(p) is a set of integers {0,1,2,...,p — 1} with arithmetic operations
of addition and multiplication modulo a prime number p. Every nonzero element has
a multiplicative inverse, and the field satisfies the usual algebraic properties: closure,
associativity, commutativity, distributivity, identity elements, and inverses.
Problem Description
Design a class FiniteFieldElement to represent elements of GF(p). The class should support arith-
metic operations, inverses, and comparisons using operator overloading.
Class Specification
e Class Name: FiniteFieldElement

e Private Data Members:

— int value; // element value

— int prime; // modulus of the field

e Public Member Functions:

FiniteFieldElement (int v, int p); Constructor initializes element modulo p.

FiniteFieldElement inverse() const; Returns multiplicative inverse (throws error if

value = 0)

FiniteFieldElement pow(int n) const; Returns exponentiation modulo p

void display() const; Displays the element

Operator Overloading

e operator +() Addition modulo p:

a+b=(a+b) modp

e operator -() Subtraction modulo p:

a—b=(a—>b) modp

e operator *() Multiplication modulo p:

axb=(a-b) modp

e operator /() Division modulo p using multiplicative inverse:

a/b=axb"t modp

e operator ==() Checks the equality of two field elements

Tasks

1.

Construct the finite field GF(7)

Create field elements a =3 and b= 5

Demonstrate arithmetic operations: a + b, a — b, a * b, a/b

Compute multiplicative inverses for all nonzero elements

Verify field properties: closure, associativity, commutativity, distributivity, and identity elements

Expected Output Example

GF(7) Elements: 0, 1, 2, 3, 4, 5, 6

pPpoP P PP
* |

1 (mod 7)
5 (mod 7)
1 (mod 7)
2 (mod 7)

Multiplicative inverses:

17-1
27-1
3°-1
4°-1
57-1
6°-1

1

D W N O

Project - 2: Connect Four Using C++ Classes

Problem Statement

Design and implement Connect Four using C++ classes. Connect Four is a two-player game where

players take turns dropping colored discs into a vertical 6 x 7 grid. The goal is to connect four discs

in a row, column, or diagonal before the opponent does. The project should utilize object-oriented

programming concepts such as classes, objects, encapsulation, and methods for handling game logic

and player interaction.

Project Requirements

1. Create a Disc class to represent an individual disc.

(a) Data member: color or player identifier.

(b) Methods: getColor(), setColor().
2. Create a Board class to represent the game grid.

a

b

(a) Initialize a 6 x 7 grid with empty slots.

(b) Display the current state of the grid in a readable format.

(¢) Include a method to drop a disc into a specified column.
)

(d) Include a method to check for a winning condition (four connected discs horizontally, ver-

tically, or diagonally).
(e) Include a method to check if the board is full (draw condition).
3. Create a Game class to manage gameplay.
(a) Allow two players to take turns dropping discs.
(

b) Display options for the user: Play or Solution.

)

)

(c) After each move, update the board and display it.

(d) Allow the user to quit and confirm before exiting.
)

(e) Keep track of player turns and optionally score.

4. Ensure proper encapsulation of disc and board operations within the respective classes.

Suggested Class Structure

1. Disc Class:

e Data member: char color or int playerID

e Methods: getColor(), setColor()
2. Board Class:

e Data member: 2D array of Disc objects

e Methods: initializeBoard(), displayBoard(), dropDisc(int column, Disc disc), checkWin(),
isFull()

3. Game Class:
e Data member: Board object, currentPlayer, user choice

e Methods: playGame(), showSolution(), switchPlayer(), confirmQuit/()

Reference

For more details about Connect Four, visit: https://en.wikipedia.org/wiki/Connect_Four

https://en.wikipedia.org/wiki/Connect_Four

	Finite Field Construction using C++ Classes and Operator Overloading

