
INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MA517M-Basic Programming Laboratory Last Date: 09 November 2025

Name Roll No.: MA25M101

Finite Field Construction using C++ Classes and Operator

Overloading

Objective: To design a C++ program that implements arithmetic in a finite field (Galois Field

GF (p)) using classes, encapsulation, and operator overloading.

A finite field GF (p) is a set of integers {0, 1, 2, . . . , p − 1} with arithmetic operations

of addition and multiplication modulo a prime number p. Every nonzero element has

a multiplicative inverse, and the field satisfies the usual algebraic properties: closure,

associativity, commutativity, distributivity, identity elements, and inverses.

Problem Description

Design a class FiniteFieldElement to represent elements of GF (p). The class should support arith-

metic operations, inverses, and comparisons using operator overloading.

Class Specification

• Class Name: FiniteFieldElement

• Private Data Members:

– int value; // element value

– int prime; // modulus of the field

• Public Member Functions:

– FiniteFieldElement(int v, int p); Constructor initializes element modulo p.

– FiniteFieldElement inverse() const; Returns multiplicative inverse (throws error if

value = 0)

– FiniteFieldElement pow(int n) const; Returns exponentiation modulo p

– void display() const; Displays the element

Operator Overloading

• operator +() Addition modulo p:

a+ b ≡ (a+ b) mod p

• operator -() Subtraction modulo p:

a− b ≡ (a− b) mod p



• operator *() Multiplication modulo p:

a ∗ b ≡ (a · b) mod p

• operator /() Division modulo p using multiplicative inverse:

a/b ≡ a ∗ b−1 mod p

• operator ==() Checks the equality of two field elements

Tasks

1. Construct the finite field GF (7)

2. Create field elements a = 3 and b = 5

3. Demonstrate arithmetic operations: a+ b, a− b, a ∗ b, a/b

4. Compute multiplicative inverses for all nonzero elements

5. Verify field properties: closure, associativity, commutativity, distributivity, and identity elements

Expected Output Example

GF(7) Elements: 0, 1, 2, 3, 4, 5, 6

a = 3, b = 5

a + b = 1 (mod 7)

a - b = 5 (mod 7)

a * b = 1 (mod 7)

a / b = 2 (mod 7)

Multiplicative inverses:

1^-1 = 1

2^-1 = 4

3^-1 = 5

4^-1 = 2

5^-1 = 3

6^-1 = 6

Project - 2: Connect Four Using C++ Classes

Problem Statement

Design and implement Connect Four using C++ classes. Connect Four is a two-player game where

players take turns dropping colored discs into a vertical 6× 7 grid. The goal is to connect four discs

in a row, column, or diagonal before the opponent does. The project should utilize object-oriented

programming concepts such as classes, objects, encapsulation, and methods for handling game logic

and player interaction.



Project Requirements

1. Create a Disc class to represent an individual disc.

(a) Data member: color or player identifier.

(b) Methods: getColor(), setColor().

2. Create a Board class to represent the game grid.

(a) Initialize a 6× 7 grid with empty slots.

(b) Display the current state of the grid in a readable format.

(c) Include a method to drop a disc into a specified column.

(d) Include a method to check for a winning condition (four connected discs horizontally, ver-

tically, or diagonally).

(e) Include a method to check if the board is full (draw condition).

3. Create a Game class to manage gameplay.

(a) Allow two players to take turns dropping discs.

(b) Display options for the user: Play or Solution.

(c) After each move, update the board and display it.

(d) Allow the user to quit and confirm before exiting.

(e) Keep track of player turns and optionally score.

4. Ensure proper encapsulation of disc and board operations within the respective classes.

Suggested Class Structure

1. Disc Class:

• Data member: char color or int playerID

• Methods: getColor(), setColor()

2. Board Class:

• Data member: 2D array of Disc objects

• Methods: initializeBoard(), displayBoard(), dropDisc(int column, Disc disc), checkWin(),

isFull()

3. Game Class:

• Data member: Board object, currentPlayer, user choice

• Methods: playGame(), showSolution(), switchPlayer(), confirmQuit()

Reference

For more details about Connect Four, visit: https://en.wikipedia.org/wiki/Connect_Four

https://en.wikipedia.org/wiki/Connect_Four

	Finite Field Construction using C++ Classes and Operator Overloading

