INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MA517M-Basic Programming Laboratory Last Date: 09 November 2025 Name Roll No.: MA25M102

Cantor Set Construction using C++ Classes and Operator Overloading

Objective: To design a C++ program that constructs and manipulates the *Cantor set* using recursion, object-oriented programming principles, and operator overloading.

The Cantor set is constructed by repeatedly removing the open middle third of each interval, starting with the closed interval [0,1]. After k steps, the set consists of 2^k disjoint intervals, each of length 3^{-k} .

Problem Description

Design a class CantorSet that models the k-th stage of the Cantor set construction. The class should store the collection of intervals that remain after k iterations, and provide overloaded operators for set operations and comparisons.

Mathematical Background

- Start with $C_0 = [0, 1]$.
- Define recursively:

$$C_{k+1} = \frac{1}{3}C_k \cup \left(\frac{2}{3} + \frac{1}{3}C_k\right)$$

• The limit set $C = \bigcap_{k=0}^{\infty} C_k$ is the **Cantor set**.

Class Specification

- Class Name: CantorSet
- Private Data Members:

• Public Member Functions:

Operator Overloading

• operator +() Union of two Cantor sets:

$$C_k + C_m = C_{\max(k,m)} \cup C_{\min(k,m)}$$

- operator ==() Checks whether two Cantor sets are at the same level (and have identical intervals).
- operator <() and operator >() Compare Cantor sets by level of iteration (i.e., their depth of construction).

Tasks

- 1. Create the Cantor sets C_1 , C_2 , and C_3 .
- 2. Display the intervals for each iteration.
- 3. Combine C_2 and C_3 using operator + and display the resulting intervals.
- 4. Compare C_1 , C_2 , and C_3 using the overloaded <, >, and == operators.

Expected Output Example

```
C1 Intervals:
[0, 0.3333] [0.6667, 1]

C2 Intervals:
[0, 0.1111] [0.2222, 0.3333] [0.6667, 0.7778] [0.8889, 1]

C3 Intervals:
[0, 0.037037] [0.074074, 0.111111] ... [0.962963, 1]

Union (C2 + C3) constructed.

C1 < C2 : True

C3 == C3 : True
```

Project - 2: Number Slide Game Using C++ Classes

Problem Statement

Design and implement a **Number Slide Game** using C++ classes. The program should simulate a 4×4 sliding puzzle where the goal is to arrange numbers from 1 to 15 in order, leaving one space. The project should utilize object-oriented programming concepts such as classes, objects, encapsulation, and methods for handling game logic.

Project Requirements

- 1. Create a Matrix class to represent the 4×4 game board.
 - (a) Include a method to generate a random matrix of size 4×4 using srand() in the range [1, 16].
 - (b) Include a method to check that all entries of the matrix are distinct.
 - (c) Remove the entry with the value 16 to represent the space.
- 2. Create a Game class to manage gameplay.
 - (a) Display options for the user: Play or Solution.
 - (b) If the user chooses Play, show the navigation commands:
 - A/a for Left
 - S/s for Down
 - D/d for Right
 - W/w for Up
 - Q/q for Quit
 - (c) When the user presses Q/q, confirm again before quitting.
 - (d) After each move, display the updated matrix in a nicely formatted way.
- 3. If the user chooses Solution, display the sequence of movements leading to the solved puzzle, and show the final output.
- 4. Ensure proper encapsulation of game logic and board operations within the respective classes.

Suggested Class Structure

- 1. Matrix Class:
 - Data member: 4×4 integer array representing the board
 - Methods: generateMatrix(), checkDistinct(), removeEmpty(), displayMatrix()
- 2. Game Class:
 - Data member: Matrix object, user choice
 - Methods: playGame(), showSolution(), processMove(char move), confirmQuit()

Reference

For more details about the game, visit: http://www.artbylogic.com/puzzles/numSlider/numberShuffle.htm