INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MA517M-Basic Programming Laboratory Last Date: 09 November 2025
Name Roll No.: MA25M103

Prime Factorization and the Unique Factorization Theorem

Objective: To design a C+4 program using classes and operator overloading to demonstrate

the Unique Factorization Theorem for integers.

Every integer n > 1 can be represented uniquely (up to the order of factors) as a product

of prime powers:
— %1 a2 (93
n VS 2 W Prs

where p; are primes and a; > 1.

Problem Description: Design a C++ class PrimeDecomposition that stores an integer and its
unique prime factorization, verifies arithmetic relations between integers, and allows operations be-
tween factorizations using operator overloading.
Class Specification

e Class Name: PrimeDecomposition

e Private Data Members:

— int number; // stores the integer

— std::map<int, int> factors; // key: prime, value: exponent

e Public Member Functions:

PrimeDecomposition(int n); Constructor to initialize the number and compute its prime

factors.

void display() comnst; Displays the factorization in readable form. Example: 360 =
23 . 32 . 51

— bool isPrime(int n); Helper function to test primality.

— std::map<int,int> factorize(int n); Returns a map of prime factors and their powers.

Operator Overloading

e operator *() Combines two prime decompositions to represent multiplication of integers:

(23-3%) % (2-5) =21.32. 5!

e operator ==() Checks whether two decompositions represent the same integer.

e operator <() and operator >() Compare two integers based on their numerical values.

Tasks

1. Create objects for the following integers:

ny = 360, ng = 84, ns = 1260
2. Display their unique prime factorizations:
360 =2%-3%2.5', 84=22.3'.7" 1260=22.32.5'.7!

3. Verify the relation:
(360 * 84) == (1260 * 24)

and display the resulting factorization.
4. Test comparison operations:
360 < 1260, 84 > 24
Expected Output Example

360 = 273 * 372 x 571
84 =272 % 371 x 771
1260 = 272 * 372 * 571 x 771

(360 * 84) = 275 % 3°3 * 571 x 7”71
(1260 * 24) = 275 * 373 * 571 * 7°1

The factorizations are equal.

360 < 1260 : True
84 > 24 : True

Concepts Covered

e (Classes and encapsulation
e Operator overloading: *, ==, <, >

Prime factorization algorithm

Implementation of the Unique Factorization Theorem

Use of STL containers (std: :map)

Project - 2 : Word Shuffle Game Using C++ Classes

Problem Statement

Design and implement a Word Shuffle Game using C++4 classes. The program should allow
the user to unscramble letters to form meaningful words. The project should utilize object-oriented
programming concepts such as classes, objects, encapsulation, and methods to handle word selection,

shuffling, and user interaction.

Project Requirements

1. Create a Word class to represent a word in the game.

(a) Include a method to randomly select a word from a predefined list.
(b) Include a method to shuffle the letters of the word.
(c¢) Include a method to display the shuffled word to the user.

2. Create a Game class to manage gameplay.
(a) Display options for the user: Play or Solution.
(

b) If the user chooses Play, allow them to enter guesses.

d

)
)
(c) Validate user input and provide feedback if the guess is correct or incorrect.
(d) Keep track of the number of attempts.

)

(e) Allow the user to quit by entering a special command (e.g., Q/q) and confirm before exiting.
3. If the user chooses Solution, display the original word and the correct sequence of letters.

4. Ensure proper encapsulation of word logic and gameplay operations within the respective classes.

Suggested Class Structure

1. Word Class:

e Data member: string originalWord, string shuffledWord

e Methods: selectWord(), shufleWord(), displayWord()
2. Game Class:

e Data member: Word object, user choice, attempt counter

e Methods: playGame(), showSolution(), processGuess(string guess), confirmQuit()

	Prime Factorization and the Unique Factorization Theorem

