
INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MA517M-Basic Programming Laboratory Last Date: 09 November 2025

Name Roll No.: MA25M104

Implementation of Riemann Integrable Functions using C++ and

Classes

1. Design a C++ class RiemannFunction to represent a real-valued function.

f : [a, b] → R

And to numerically compute its Riemann sum and integral.

The class should:

• Store the interval endpoints a, b,

• Store a function pointer or std::function<double(double)> f,

• Include parameters such as the number of subintervals N and partition type (left, right,

midpoint).

2. Implement the following constructors and functions:

• Default constructor (for f(x) = 0 on [0, 1]),

• Parameterized constructor accepting (a, b,N, f),

• A method evaluate(double x) returning f(x),

• A method riemannSum() that computes:

SN (f) =
N∑
i=1

f(x∗i)∆x,

where x∗i depends on the partition rule,

• A method integrate() that approximates

� b

a
f(x) dx using the Riemann sum.

3. Implement operator overloading to combine functions symbolically:

(f + g)(x) = f(x) + g(x)

(f − g)(x) = f(x)− g(x)

(c ∗ f)(x) = c f(x)

using:

• operator+ for addition of two functions,

• operator- for subtraction,

• operator* for scalar multiplication.

Example:

f(x) = x2, g(x) = sin(x), h = f + g =⇒ h(x) = x2 + sin(x)

4. Add methods to compute specific Riemann approximations:

• Left Riemann Sum,

• Right Riemann Sum,

• Midpoint Riemann Sum,

• Trapezoidal Rule (for comparison),

• Simpson’s Rule (as higher-order approximation).

5. Implement a method isRiemannIntegrable(double tol) that:

• Computes upper and lower sums UN , LN ,

• Checks whether |UN − LN | < tol for sufficiently large N ,

• Returns true if f is approximately Riemann integrable.

LN (f) =
N∑
i=1

mi∆x, UN (f) =
N∑
i=1

Mi∆x, mi = inf
x∈Ii

f(x), Mi = sup
x∈Ii

f(x)

6. Create a test program to:

• Define the following functions using lambda expressions:

f(x) = x2, g(x) = sin(x), h(x) = |x|

• Compute
� 1
0 f(x) dx,

� π
0 g(x) dx,

� 1
−1 h(x) dx using different Riemann rules.

• Test whether h(x) = |x| is Riemann integrable on [−1, 1].

7. (Optional Extension:) Implement operator overloading for function composition:

(f ◦ g)(x) = f(g(x))

using operator() or a custom operator.

8. (Optional Extension:) Overload comparison operators to compare integrals of two functions:

f == g ⇐⇒
� b

a
f(x) dx =

� b

a
g(x) dx,

f > g ⇐⇒
� b

a
f(x) dx >

� b

a
g(x) dx.

Project - 2: Match-3 Game (Candy Crush Variant) Using C++

Classes

Problem Statement

Design and implement a Match-3 Game using C++ classes. The game consists of a grid of colored

tiles (or symbols), where the player swaps adjacent tiles to form a sequence of three or more identical

tiles in a row or column. When a match is formed, the tiles disappear, points are awarded, and new

tiles fall from the top to fill empty spaces. The project should utilize object-oriented programming

concepts such as classes, objects, encapsulation, and methods to handle grid updates, scoring, and

user interaction.

Project Requirements

1. Create a Tile class to represent an individual tile in the grid.

(a) Data member: type or color of the tile.

(b) Methods: getType(), setType().

2. Create a Board class to represent the game grid.

(a) Initialize the grid with random tiles.

(b) Display the current state of the grid in a readable format.

(c) Detect and remove matches of three or more tiles in a row or column.

(d) Drop new tiles from the top to fill empty spaces.

(e) Include a method to check if possible moves exist.

3. Create a Game class to manage gameplay.

(a) Display options for the user: Play or Solution.

(b) Allow the user to swap adjacent tiles using input commands.

(c) Keep track of the player’s score.

(d) Allow the user to quit and confirm before exiting.

(e) Optionally, allow the user to reset the board or play multiple rounds.

4. Ensure proper encapsulation of tile and board operations within the respective classes.

Suggested Class Structure

1. Tile Class:

• Data member: int type or char color

• Methods: getType(), setType()

2. Board Class:

• Data member: 2D array of Tile objects

• Methods: initializeBoard(), displayBoard(), detectMatches(), removeMatches(), dropTiles(),

hasPossibleMoves()

3. Game Class:

• Data member: Board object, user choice, score

• Methods: playGame(), showSolution(), processSwap(int row1, int col1, int row2, int col2),

confirmQuit(), resetBoard()

Reference

For more details about Match-3 games and mechanics, visit: https://en.wikipedia.org/wiki/

Tile-matching_video_game

https://en.wikipedia.org/wiki/Tile-matching_video_game
https://en.wikipedia.org/wiki/Tile-matching_video_game

	Implementation of Riemann Integrable Functions using C++ and Classes

