INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MA517M-Basic Programming Laboratory Last Date: 09 November 2025
Name Roll No.: MA25M104

Implementation of Riemann Integrable Functions using C++4 and

Classes

1. Design a C++4 class RiemannFunction to represent a real-valued function.
fila,b) = R

And to numerically compute its Riemann sum and integral.

The class should:

e Store the interval endpoints a, b,

e Store a function pointer or std: :function<double(double)> f,

e Include parameters such as the number of subintervals N and partition type (left, right,
midpoint).

2. Implement the following constructors and functions:

e Default constructor (for f(z) =0 on [0, 1]),

e Parameterized constructor accepting (a,b, N, f),
e A method evaluate(double x) returning f(z),
e A method riemannSum() that computes:

N

Sx(f) =) fa})A,

i=1

where z} depends on the partition rule,

b
A method integrate() that approximates / f(x) dz using the Riemann sum.
a

3. Implement operator overloading to combine functions symbolically:

(f +9)(x) = fz) + g(x)
(f = 9)(x) = fz) — g(x)
(cx f)(x) = cf(z)

using:

e operator+ for addition of two functions,
e operator- for subtraction,

e operator* for scalar multiplication.

Example:
f(x)=2% g(z)=sin(z), h=f+g = h(z)=2>+sin(z)

4. Add methods to compute specific Riemann approximations:

Left Riemann Sum,

Right Riemann Sum,

Midpoint Riemann Sum,

Trapezoidal Rule (for comparison),

Simpson’s Rule (as higher-order approximation).
5. Implement a method isRiemannIntegrable(double tol) that:

e Computes upper and lower sums Uy, Ly,
e Checks whether |Uy — Ly| < tol for sufficiently large N,

e Returns true if f is approximately Riemann integrable.

N N
Ln(f) = ;mzﬂﬂﬁ, Un(f) = ;Mz‘ﬁx, m; = ;g f(x), M;= 21615 f(z)

6. Create a test program to:
e Define the following functions using lambda expressions:
fla) =2 g(z) =sin(z), h(z)=]z|

e Compute fol f(x)dx, [g(x)dz, f_ll h(x) dx using different Riemann rules.

e Test whether h(z) = |z| is Riemann integrable on [—1, 1].
7. (Optional Extension:) Implement operator overloading for function composition:
(feg)(x) = flg(x))
using operator () or a custom operator.

8. (Optional Extension:) Overload comparison operators to compare integrals of two functions:
b b
f=—=g9 = [@)= [gw)a
ab ab
f>9g = / f(x)d:z>/ g(x)dx.
Project - 2: Match-3 Game (Candy Crush Variant) Using C++

Classes

Problem Statement

Design and implement a Match-3 Game using C++ classes. The game consists of a grid of colored

tiles (or symbols), where the player swaps adjacent tiles to form a sequence of three or more identical

tiles in a row or column. When a match is formed, the tiles disappear, points are awarded, and new
tiles fall from the top to fill empty spaces. The project should utilize object-oriented programming
concepts such as classes, objects, encapsulation, and methods to handle grid updates, scoring, and

user interaction.

Project Requirements

1. Create a Tile class to represent an individual tile in the grid.

(a) Data member: type or color of the tile.

(b) Methods: getType(), setType().
2. Create a Board class to represent the game grid.
(a) Initialize the grid with random tiles.
(

b) Display the current state of the grid in a readable format.

(
(d

)
)
c¢) Detect and remove matches of three or more tiles in a row or column.
) Drop new tiles from the top to fill empty spaces.

)

(e) Include a method to check if possible moves exist.
3. Create a Game class to manage gameplay.

(
(

a) Display options for the user: Play or Solution.

b) Allow the user to swap adjacent tiles using input commands.

)
)

(c) Keep track of the player’s score.

(d) Allow the user to quit and confirm before exiting.
)

(e) Optionally, allow the user to reset the board or play multiple rounds.

4. Ensure proper encapsulation of tile and board operations within the respective classes.

Suggested Class Structure

1. Tile Class:

e Data member: int type or char color

e Methods: getType(), setType()
2. Board Class:

e Data member: 2D array of Tile objects
e Methods: initializeBoard(), displayBoard(), detectMatches(), removeMatches(), dropTiles(),
hasPossibleMoves()
3. Game Class:

e Data member: Board object, user choice, score

e Methods: playGame(), showSolution(), processSwap(int rowl, int coll, int row2, int col2),
confirmQuit(), resetBoard()

Reference

For more details about Match-3 games and mechanics, visit: https://en.wikipedia.org/wiki/

Tile-matching_video_game

https://en.wikipedia.org/wiki/Tile-matching_video_game
https://en.wikipedia.org/wiki/Tile-matching_video_game

	Implementation of Riemann Integrable Functions using C++ and Classes

