
INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

Project - 1 MA517M-Basic Programming Laboratory Last Date: 09 November 2025

Name Roll No.: MA25M107

Sparse Matrix Implementation using C++ and Classes

1. Design a C++ class SparseMatrix to efficiently store and manipulate sparse matrices using the

Compressed Sparse Row (CSR) format. Each matrix should be represented by:

A = (values, cols, ptr)

where:

• values[k] stores the nonzero entries of the matrix row by row,

• cols[k] stores the corresponding column indices,

• ptr[i] stores the index in values where row i begins.

For example, for a 3× 3 matrix

A =

10 0 0

0 20 30

40 0 50


we have:

values = [10, 20, 30, 40, 50], cols = [0, 1, 2, 0, 2], ptr = [0, 1, 3, 5].

2. Implement the following functionalities in the SparseMatrix class:

• A constructor that builds the sparse matrix from a dense m × n 2D array (or vector of

vectors).

• A member function to display the matrix in both dense and sparse (CSR) formats.

• A method toDense() that converts the CSR matrix back to a 2D array.

3. Implement operator overloading for the following operations:

• operator+ : Sparse matrix addition

• operator- : Sparse matrix subtraction

• operator* : Sparse matrix–vector multiplication

The multiplication should be implemented as:

(Ax)i =
n∑

j=1

aijxj ,

but only iterating over the nonzero elements of A.

4. Add functions to compute:

• The 1-norm of the matrix:

∥A∥1 = max
1≤j≤n

m∑
i=1

|aij |,

• The infinity norm:

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij |.

5. Implement a function JacobiSolve(Vector b, int maxIter, double tol) that solves:

Ax = b

using the Jacobi Iterative Method with CSR-based matrix operations. The iteration formula

is:

x
(k+1)
i =

1

aii

bi −
∑
j ̸=i

aijx
(k)
j


6. Create a test program that:

• Defines a sparse matrix A with at least 50% zeros,

• Defines a right-hand side vector b,

• Solves Ax = b using the Jacobi method,

• Prints the number of iterations and final residual ∥Ax− b∥2.

7. (Optional Extension:) Implement a friend function to compare two sparse matrices using oper-

ator overloading:

A == B ⇐⇒ All entries and structure are identical,

A < B ⇐⇒ ∥A∥1 < ∥B∥1,

A > B ⇐⇒ ∥A∥1 > ∥B∥1.

Project - 2 : Word Shuffle Game Using C++ Classes

Problem Statement

Design and implement a Word Shuffle Game using C++ classes. The program should allow

the user to unscramble letters to form meaningful words. The project should utilize object-oriented

programming concepts such as classes, objects, encapsulation, and methods to handle word selection,

shuffling, and user interaction.

Project Requirements

1. Create a Word class to represent a word in the game.

(a) Include a method to randomly select a word from a predefined list.

(b) Include a method to shuffle the letters of the word.

(c) Include a method to display the shuffled word to the user.

2. Create a Game class to manage gameplay.

(a) Display options for the user: Play or Solution.

(b) If the user chooses Play, allow them to enter guesses.

(c) Validate user input and provide feedback if the guess is correct or incorrect.

(d) Keep track of the number of attempts.

(e) Allow the user to quit by entering a special command (e.g., Q/q) and confirm before exiting.

3. If the user chooses Solution, display the original word and the correct sequence of letters.

4. Ensure proper encapsulation of word logic and gameplay operations within the respective classes.

Suggested Class Structure

1. Word Class:

• Data member: string originalWord, string shuffledWord

• Methods: selectWord(), shuffleWord(), displayWord()

2. Game Class:

• Data member: Word object, user choice, attempt counter

• Methods: playGame(), showSolution(), processGuess(string guess), confirmQuit()

	 Sparse Matrix Implementation using C++ and Classes

