INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
DEPARTMENT OF MATHEMATICS AND STATISTICS

MAG635P-Scientific Programming Laboratory
Lab Exercise-1 (150 Marks) Deadline: 6 January 2026, 4:00 PM

Preliminaries

Definition 1 (Algorithm). An algorithm is a list of unambiguous rules that specify successive

steps to solve a problem

Definition 2 (Computer Program). The computer program is a clearly specified sequence of

computer instructions implementing an algorithm

Definition 3 (Elementary Operations). Most modern computers and languages build com-
plex programs from ordinary arithmetic and logical operations such as standard unary and
binary operations (negation, addition, subtraction, multiplication, division, modulo operations,
assignment), boolean operations, binary comparisons (=, >, <, >, <), and branching operations.

These operations are called elementary operations.

Definition 4 (Running Time). The running time or computing time of an algorithm is the

number of its elementary operations. It is denoted by T'(n).

Example 1.1 (Sum of Elements of an array). Let a denote an array or list of integers where

the sum

~
Il
o

is required. To get the sum s, we need to repeat n times the same elementary operations.
Therefore, the running time 7'(n) is proportional to or linear in n. That is T'(n) = cn. This
algorithm is called a linear algorithm. The unknown factor ¢ depends on a particular computer,

programming language, compiler, OS, etc.

In the above algorithm, suppose 7'(1) is given to you, then you can compute 7(1000) =
10007°(1) = 107°(100). If per addition, it takes 1s, then T'(1) = 1, then 7°(1000) = 1000s.

Example 1.2 (Sum of Elements of Subarrays). Now, let us compute the sum of each subarray

of some m. That is,

3
L

sj = alj +k],7=0,1,2,--- . n—m
0

B
I

How many subarrays? Prove that T5(n) = cm(n —m + 1). Also, if If m = F, prove that
Ty(n) = 0.25¢n? 4 0.5¢n.

Exercise 1: Linear Sum, Quadratic: Slow/Fast Sum

Algorithm 1: Linear Sum

Input: array, a[0,1,--- ,n — 1]
Output: s

150

2 fort < 0ton—1do

3 t s < s+ ali]

Algorithm 2: Quadratic Algorithms: Slow Sum

Input: array, al0,1,---,2m — 1]
Output: s[0,1,---,m]
150

2 for i < 0 to m do

3 sli] <0
4 for j < 0tom—1do
s || sl sli] +ali +]

Algorithm 3: Quadratic algorithms: Fast Sum

Input: array, al0,1,---,2m — 1]
Output: s[0,1, - ,m]

s[0] <~ 0

for j <~ 0tom —1do

| (0] ¢ s[0] +alj]

4 for i <1 tom do

| sli) < sfi— 1] +afi +m — 1] —ali — 1]

[uny

N

w

9]

1. Write a Python/C++ function to compute the time taken to run a program in terms of

minutes and hours (Internet usage allowed)

2. Extend this function to display the time in terms of hours, minutes, seconds, microseconds,
milliseconds, or nanoseconds or days, weeks, or years, depending on the number (Internet
usage allowed). Save this function for future exercises. We will use this function to get

the time taken by each program in the future (Internet usage allowed).

3. Write a Python/C++ program to implement algorithms 1, 2, and 3, generate random
entries for given n as in Table [l Let T7(n),T2(n) and T3(n) be the running time for
algorithms 1, 2, and 3, respectively. For T, and T3, take, m = n/2.

4. For each elementary operation (in this case, additions/subtractions only), compute re-
spective T1(n), Tz(n) and T3(n). Fill in the table of minutes and hours.

5. Estimate the value of ¢ from the table

6. Compute the T7(10'%), T5(10') and T3(10'?) without doing the array sum operation.

B+3+3x3+9x5+4+6="70]

n Ti(n) | Minutes | Hours | T5(n) | Minutes | Hours | 73(n) | Minutes | Hours
100
500
1000
5000
50000

Tab. 1: Ti(n), Tz(n), T3(n)

Exercise 2: Polynomials

Example 3.1 (Polynomials). Let a denote an array or list of real numbers and

is required. Let Ty(n) be the running time to compute s(z).

1. Write a Python/C++ program to compute s(z) for given z and n
2. Generate the list of real numbers for ¢ and choose = 0.1 and fill the below table

3. Compute the T;(10'?) without doing the array sum operation.

345 x 3+ 2=20]

Ty(n) | Minutes | Hours

10
20
25
50

Tab. 2: Ty(n)

Exercise 3 : Taylor Series

Example 4.1 (Taylor Series).

> 0 (2
f() = Y — gy L

e You can relate that this problem is similar to the above problem, where a[i] is given
by some mathematical expression. In order to compute the infinite sum, you require an
enormous amount of sum and an enormous amount of accuracy. Let us not do an infinite

sum; instead, let us do a finite sum, for sufficiently large n, say f,(z).

Example 4.2 (Taylor Series - Truncated).

[y

n—

fulz) = > (= o)

i

z‘f(i)@O)
7!

Il
o

Example 4.3 (Taylor Series - sinz Truncated).

n—1 g2+l
Si(x) =sinx = 1)
(@) ;() (20 +1)!

1. Write a Python/C++ function create a factorial of any natural number. That is, !

2. Write a Python/C++ function create a exponential power of any real number (z) for a

given i, that is, z°.
3. For given n and x, use the above two functions to compute the truncated sine series.
4. Compute the value of sinz using S; and numpy library and compare it

5. Let T5(n,x) be running time for S;(x). Fill out the following table

x n | Si(z) | np.sin(x) | T5(n,z) | Seconds
/2 |20
/4|20
7/6 | 20
7/3] 20
/3 | 50

Tab. 3: sin(z)

B3+ 3+3+3+7x4=140]

Exercise 4: Norm of a Vector

Let

T = (IL‘17ZL'2,"' ,ZEn)

n 1/2
ello = (Z Ixz-Iz)
i=1
n
el =) il
i=1

The p— norm or ¢, norm of a vector is defined by

n 1/p
I = (z \a:,-|p>
=1

1. Compute each of the norms using Python/C++ function. Get the input n from the user,

be a vector in R".

generate a random vector between 0 and 1 of size n. Display the norm for all cases. Use

p=3,p=>5and p=1/2 for testing.

2. Estimate the time requirement to compute ||z]|1, [z |3, [|z|[5 when n = 10",

[4 x 5 = 20]

Bonus: Taylor Series

1. Repeat the above exercise for the following series

n—1 %
i :L.
So(x) = cosx = ;(_1) o)
n—1 l’i
Si(x) =e* = -
il
i=0
Si(z) =tantx = n_l(—l)i_lﬂ
e - 2 —1

i=0
1. Compute the value of cosz, e® and tan~'(z) using Sy, S3 and S;. Also, use the numpy

library and compare it
2. Fill out tables [4] [5] and [6]

3. Use tan~!(z) to compute the value of 7. Hint: 4 x tan—'(1).

R+7Tx4+2+7Tx4+2+6 x4+ 4=90

x n | So(z) | np.cos(x) | Ts(n,x) | Seconds
/3 | 20
/4|20
/6 | 20
/2| 20

Tab. 4: cos(x)

n | Ss(z) | np.exp(x) | T7(n,z) | Seconds
0 20
1 120
—1120
0.1 120

Tab. 5: exp(z)

n | Sy(z) | np.atan(x) | Ts(n,z) | Seconds
3 20
30 | 20
500 | 20
0.5 | 20

Tab. 6: tan—!(z)

Bonus : FLOPS for 77 to Ty (Paper Work)

1. Convert the table entries to years. How many years will take for T;(n),i = 1,2,--- 8 if
n = 1097 [1+4+1=2]

2. Suppose your computer can perform 10% [kFLOPS] operations (additions/subtraction) in
1s, how many years will it take to find the sum using algorithm 2 and algorithm 3, when
n =107 1+1=2

3. Answer the above question 2, for 10° operations [MFLOPS], 10? operations [GFLOPS]
and 10'? operations [TFLOPS]. [2+2+2=06]

	Preliminaries
	Exercise 1: Linear Sum, Quadratic: Slow/Fast Sum
	Exercise 2: Polynomials
	Exercise 3 : Taylor Series
	Exercise 4: Norm of a Vector
	Bonus: Taylor Series
	Bonus : FLOPS for T1 to T8 (Paper Work)

