
INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

DEPARTMENT OF MATHEMATICS AND STATISTICS

MA635P-Scientific Programming Laboratory

Lab Exercise-1 (150 Marks) Deadline: 6 January 2026, 4:00 PM

Preliminaries

Definition 1 (Algorithm). An algorithm is a list of unambiguous rules that specify successive

steps to solve a problem

Definition 2 (Computer Program). The computer program is a clearly specified sequence of

computer instructions implementing an algorithm

Definition 3 (Elementary Operations). Most modern computers and languages build com-

plex programs from ordinary arithmetic and logical operations such as standard unary and

binary operations (negation, addition, subtraction, multiplication, division, modulo operations,

assignment), boolean operations, binary comparisons (=, >,<,≥,≤), and branching operations.

These operations are called elementary operations.

Definition 4 (Running Time). The running time or computing time of an algorithm is the

number of its elementary operations. It is denoted by T (n).

Example 1.1 (Sum of Elements of an array). Let a denote an array or list of integers where

the sum

s =
n−1∑
i=0

a[i]

is required. To get the sum s, we need to repeat n times the same elementary operations.

Therefore, the running time T (n) is proportional to or linear in n. That is T (n) = cn. This

algorithm is called a linear algorithm. The unknown factor c depends on a particular computer,

programming language, compiler, OS, etc.

In the above algorithm, suppose T (1) is given to you, then you can compute T (1000) =

1000T (1) = 10T (100). If per addition, it takes 1s, then T (1) = 1, then T (1000) = 1000s.

Example 1.2 (Sum of Elements of Subarrays). Now, let us compute the sum of each subarray

of some m. That is,

sj =
m−1∑
k=0

a[j + k], j = 0, 1, 2, · · · , n−m

How many subarrays? Prove that T2(n) = cm(n − m + 1). Also, if If m = n
2
, prove that

T2(n) = 0.25cn2 + 0.5cn.

Exercise 1: Linear Sum, Quadratic: Slow/Fast Sum

Algorithm 1: Linear Sum

Input: array, a[0, 1, · · · , n− 1]

Output: s

1 s← 0

2 for i← 0 to n− 1 do

3 s← s+ a[i]

Algorithm 2: Quadratic Algorithms: Slow Sum

Input: array, a[0, 1, · · · , 2m− 1]

Output: s[0, 1, · · · ,m]

1 s← 0

2 for i← 0 to m do

3 s[i]← 0

4 for j ← 0 to m− 1 do

5 s[i]← s[i] + a[i+ j]

Algorithm 3: Quadratic algorithms: Fast Sum

Input: array, a[0, 1, · · · , 2m− 1]

Output: s[0, 1, · · · ,m]

1 s[0]← 0

2 for j ← 0 to m− 1 do

3 s[0]← s[0] + a[j]

4 for i← 1 to m do

5 s[i]← s[i− 1] + a[i+m− 1]− a[i− 1]

1. Write a Python/C++ function to compute the time taken to run a program in terms of

minutes and hours (Internet usage allowed)

2. Extend this function to display the time in terms of hours, minutes, seconds, microseconds,

milliseconds, or nanoseconds or days, weeks, or years, depending on the number (Internet

usage allowed). Save this function for future exercises. We will use this function to get

the time taken by each program in the future (Internet usage allowed).

3. Write a Python/C++ program to implement algorithms 1, 2, and 3, generate random

entries for given n as in Table 1. Let T1(n), T2(n) and T3(n) be the running time for

algorithms 1, 2, and 3, respectively. For T2 and T3, take, m = n/2.

4. For each elementary operation (in this case, additions/subtractions only), compute re-

spective T1(n), T2(n) and T3(n). Fill in the table of minutes and hours.

5. Estimate the value of c from the table

6. Compute the T1(10
12), T2(10

12) and T3(10
12) without doing the array sum operation.

[3 + 3 + 3 × 3 + 9 × 5 + 4 + 6 = 70]

n T1(n) Minutes Hours T2(n) Minutes Hours T3(n) Minutes Hours

100

500

1000

5000

50000

Tab. 1: T1(n), T2(n), T3(n)

Exercise 2: Polynomials

Example 3.1 (Polynomials). Let a denote an array or list of real numbers and

s(x) =
n−1∑
i=0

aix
i

is required. Let T4(n) be the running time to compute s(x).

1. Write a Python/C++ program to compute s(x) for given x and n

2. Generate the list of real numbers for a and choose x = 0.1 and fill the below table

3. Compute the T4(10
12) without doing the array sum operation.

[3 + 5 × 3 + 2 = 20]

n T4(n) Minutes Hours

5

10

20

25

50

Tab. 2: T4(n)

Exercise 3 : Taylor Series

Example 4.1 (Taylor Series).

f(x) =
∞∑
i=0

(x− x0)
if

(i)(x0)

i!

• You can relate that this problem is similar to the above problem, where a[i] is given

by some mathematical expression. In order to compute the infinite sum, you require an

enormous amount of sum and an enormous amount of accuracy. Let us not do an infinite

sum; instead, let us do a finite sum, for sufficiently large n, say fn(x).

Example 4.2 (Taylor Series - Truncated).

fn(x) =
n−1∑
i=0

(x− x0)
if

(i)(x0)

i!

Example 4.3 (Taylor Series - sin x Truncated).

S1(x) = sinx =
n−1∑
i=0

(−1)i x2i+1

(2i+ 1)!

1. Write a Python/C++ function create a factorial of any natural number. That is, i!

2. Write a Python/C++ function create a exponential power of any real number (x) for a

given i, that is, xi.

3. For given n and x, use the above two functions to compute the truncated sine series.

4. Compute the value of sin x using S1 and numpy library and compare it

5. Let T5(n, x) be running time for S1(x). Fill out the following table

x n S1(x) np.sin(x) T5(n, x) Seconds

π/2 20

π/4 20

π/6 20

π/3 20

π/3 50

Tab. 3: sin(x)

[3 + 3 + 3 + 3 + 7 × 4 = 40]

Exercise 4: Norm of a Vector

Let

x = (x1, x2, · · · , xn)

be a vector in Rn.

∥x∥2 =

(
n∑

i=1

|xi|2
)1/2

∥x∥1 =
n∑

i=1

|xi|

The p− norm or ℓp norm of a vector is defined by

∥x∥pp =

(
n∑

i=1

|xi|p
)1/p

1. Compute each of the norms using Python/C++ function. Get the input n from the user,

generate a random vector between 0 and 1 of size n. Display the norm for all cases. Use

p = 3, p = 5 and p = 1/2 for testing.

2. Estimate the time requirement to compute ∥x∥1, ∥x∥22, ∥x∥pp when n = 1012.

[4 × 5 = 20]

Bonus: Taylor Series

1. Repeat the above exercise for the following series

S2(x) = cos x =
n−1∑
i=0

(−1)i x2i

(2i)!

S3(x) = ex =
n−1∑
i=0

xi

i!

S4(x) = tan−1 x =
n−1∑
i=0

(−1)i−1 x2i−1

2i− 1

1. Compute the value of cos x, ex and tan−1(x) using S2, S3 and S4. Also, use the numpy

library and compare it

2. Fill out tables 4, 5 and 6.

3. Use tan−1(x) to compute the value of π. Hint: 4× tan−1(1).

[2 + 7 × 4 + 2 + 7 × 4 + 2 + 6 × 4 + 4= 90]

x n S2(x) np.cos(x) T6(n, x) Seconds

π/3 20

π/4 20

π/6 20

π/2 20

Tab. 4: cos(x)

x n S3(x) np.exp(x) T7(n, x) Seconds

0 20

1 20

−1 20

0.1 20

Tab. 5: exp(x)

x n S4(x) np.atan(x) T8(n, x) Seconds

3 20

30 20

500 20

0.5 20

Tab. 6: tan−1(x)

Bonus : FLOPS for T1 to T8 (Paper Work)

1. Convert the table entries to years. How many years will take for Ti(n), i = 1, 2, · · · , 8 if

n = 106? [1 + 1 = 2]

2. Suppose your computer can perform 103 [kFLOPS] operations (additions/subtraction) in

1s, how many years will it take to find the sum using algorithm 2 and algorithm 3, when

n = 109? [1 + 1 = 2]

3. Answer the above question 2, for 106 operations [MFLOPS], 109 operations [GFLOPS]

and 1012 operations [TFLOPS]. [2 + 2 + 2 = 6]

	Preliminaries
	Exercise 1: Linear Sum, Quadratic: Slow/Fast Sum
	Exercise 2: Polynomials
	Exercise 3 : Taylor Series
	Exercise 4: Norm of a Vector
	Bonus: Taylor Series
	Bonus : FLOPS for T1 to T8 (Paper Work)

