
44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

Introduction to
Parallelization

GPU Basics
Introduction to Parallelization

S. Sundar and M. Panchatcharam

August 9, 2014

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

Introduction to
Parallelization

Outline

1 Introduction

2 Scientific Simulation

3 Introduction to Parallelization

44

GPU Basics

S. Sundar &
M. Panchatcharam

3 Introduction

Scientific Simulation

Introduction to
Parallelization

School Problem

Let us look at the following simple school problem

Men and Time
12 men do a work in 36 days.In how many days can 18 men do the
same work?
Key:The number of men is inversely proportional to the time
taken to do the job
Solution: With basic assumptions that each man has the same
efficiency, 18 men do the same work in 24 days.

44

GPU Basics

S. Sundar &
M. Panchatcharam

4 Introduction

Scientific Simulation

Introduction to
Parallelization

School Problem

Let us look at the second example

Men and Time
40 tailors are working in a tailor shop. A tailor can stitch 100
shirts in 10 days. The shop got an order to stitch 100 school shirts
for the next day delivery. How many persons has to be assigned to
deliver the product on the next day?

Solution: 10 men can finish the task in a single day.

44

GPU Basics

S. Sundar &
M. Panchatcharam

5 Introduction

Scientific Simulation

Introduction to
Parallelization

Draw lines

Draw a line using one hand, 2s
Draw two lines using one hand, 5s
A multi tasking person, Draw two lines using two hands, 2s
More than two lines ?
A writing pad with 10 lines? 29s(one), 14s(two)
If we have 10 hands!?

44

GPU Basics

S. Sundar &
M. Panchatcharam

6 Introduction

Scientific Simulation

Introduction to
Parallelization

What is Parallelization?

Parallelization
The simultaneous use of more than one processors or system to
solve a problem

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

7 Scientific Simulation

Introduction to
ParallelizationScientific Simulation

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

8 Scientific Simulation

Introduction to
Parallelization

Scientific Simulation

Computing and Science
Computational modeling and simulation are among the most
significant developments in the practice of scientific inquiry in the
20th Century. Within the last two decades, scientific computing
has become an important contributor to all scientific disciplines.
It is particularly important for the solution of research problems
that are insoluble by traditional scientific theoretical and
experimental approaches, hazardous to study in the laboratory, or
time consuming or expensive to solve by traditional means.

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

9 Scientific Simulation

Introduction to
Parallelization

Scientific Simulation Applications

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

10 Scientific Simulation

Introduction to
Parallelization

Traditional Engineering

Theory or Paper design
Perform experiments in Lab,
Build system

Limitations:
Is it possible to build large wind tunnel by trial and error?
– too difficult
Is it possible to throw flight passengers as an accident
experiment?
– Too expensive
Is it possible to wait for climate change or cyclone/tsunami to
attack us to observe?
– Too slow
weapons, drug design, climate experimentation
– Too dangerous

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

11 Scientific Simulation

Introduction to
Parallelization

Third Pillar of Science : Simulation

Computational Science
Use high performance computer systems to simulate the
phenomenon
Based on known physical laws and efficient numerical
methods

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

12 Scientific Simulation

Introduction to
Parallelization

Challenging Computations

Science
Global warming
Biology: Cancer; protein folding; drug design
Astrophysics
Computational chemistry
Nano Sciences

Engineering
Semiconductor
Earthquake model
CFD
Flight crash

Business
Financial and economic modeling
Translation processing, web services

Defense
Cryptography
Nuclear weapons

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

13 Introduction to
ParallelizationIntroduction to

Parallelization

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

14 Introduction to
Parallelization

Why do we need Parallelization?

Serial computing is too slow
To handle large amounts of data
Consider the following problem:

Suppose our computer performs one billion(109) calculations
per second. We want to predict the weather over India, for
the next 10 days.
Area of India is 3.2 million sq. km.
model the atmosphere from sea level to 20km
make prediction of the weather at each cubical grid, with
each cube measuring 0.1 km on each side.
To predict weather for each hour, each grid needs 100
calculations

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

15 Introduction to
Parallelization

Why do we need Parallelization?

Basics of HPC (High Performance Computing)
Flop: Floating point operation
Flops/s: floating point operation per second
Bit: 0 or 1
Bytes: Size of data (double precision floating point number is
8)
Gflops ≈ 109 flop/sec
Tflops ≈ 1012 flop/sec
Pflops ≈ 1015 flop/sec

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

16 Introduction to
Parallelization

Why do we need Parallelization?

Problem: Compute
F (latitude, longitude, elevation, time) = Temperature/Pressure/...

Discretize the domain
Total number of points and calculations

3.2 ∗ 106km2 ∗ 20km ∗ 103cubes/km3 = 6.4 ∗ 1010 points
To predict weather for one hour, we need 6.4 ∗ 1012

calculations
To predict weather for 10 days, we need
6.4 ∗ 1012 ∗ 240 = 1.5 ∗ 1015 calculations

If we use a normal PC(109), it will take
1.5 ∗ 1015/109s = 1.5 ∗ 106s = 17days
Predict hourly temperature of the globe???

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

17 Introduction to
Parallelization

Microprocessor Technology

Moore’s Law
Over the history of computing hardware, the number of transistors
in a dense integrated circuit doubles approximately every two years

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

18 Introduction to
Parallelization

Microprocessor(µP) Technology

Chip density is increasing 2x every two years
Clock speed is not increasing
Number of cores have to double instead
Parallelism must be managed by software

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

19 Introduction to
Parallelization

Three Barriers

Power
Improve power efficiency, to increase the performance of µP
Frequency
Conventional µP require increasingly deeper instruction
pipelines to achieve higher operating frequencies.This
technique has diminishing returns now, and even negative
returns if power is taken into account
Memory
latency to DRAM memory is near 1000 cycles. So, program
performance is dominated by data transfer between main
memory and the processor.

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

20 Introduction to
Parallelization

Power Barrier

Power ∝ Voltage2 × Frequency
Frequency ∝ Voltage
Power ∝ Voltage3

Cores Voltage Freq Performance Power
SuperScalar 1 1 1 1 1
Increase 1x 1.5x 1.5x 1.5x 3.3x
Multicore 2x 0.75x 0.75x 1.5x 0.8x

50% more performance with 20% less power Advice: Use multiple
slower devices, than one superfast device.

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

21 Introduction to
Parallelization

Frequency Barrier

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

22 Introduction to
Parallelization

Memory Barrier

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

23 Introduction to
Parallelization

Latency

Latency
Latency is the time taken to transfer a block of data from main
memory.

Transfer data as quickly as possible
Latency is the time the CPU waits to obtain the data
CPU clocks for caches
nano-seconds for the main memory
The latency of the main memory directly influences the
efficiency of the CPU.
Reducing wait time can be more important than increasing
execution speed

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

24 Introduction to
Parallelization

Latency

Typical Latencies of today’s world

Hierarchy Processor clocks
Register 1
L1 Cache 2-3
L2 Cache 6-12
L3 Cache 14-40

Near Memory 100-300
Far Memory 300-900

Remote Memory O(103)
Message-Passing O(103)-O(104)

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

25 Introduction to
Parallelization

Speed of Light

Can a serial computer execute the following code in one
second?

f o r i =1:TRILLION
c [i]=a [i] ∗ b [i]

To fetch a and b, it needs 2 ∗ 1012 transaction/s
Assume data travels from memory to CPU at the speed of
light

Then in the chip, the data should fit in a square of side
length ≈ 10−10 meters
It is an atom size. Is it possible to design such chip?

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

26 Introduction to
Parallelization

Parallelism

Not possible so far. But Parallelism is the way to solve.

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

27 Introduction to
Parallelization

Types of Parallelism

Bit Level Parallelism
using floating point operations, etc
Instruction Level Parallelism (ILP)
multiple instruction execution per clock cycle
Memory system parallelism
overlap of memory operations with computation
OS Parallelism
multiple jobs run in parallel on commodity SMPs.

Let us see more about it in Lecture 2

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

28 Introduction to
Parallelization

Parallel Computing Principles

Amdhal’s Law
Gustafson’s Law
Granularity
Locality
Load Balance
Synchronization
Performance modeling

These principles makes parallel programming even harder than
sequential programming

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

29 Introduction to
Parallelization

Challenges in Parallelism

It is so hard to develop algorithm
–complexity of specifying and coordinating concurrent
activities
Software development is harder
–lack of standardized and effective development tools
Rapid place of change in computer system architecture
–Today’s parallel algorithm may not be suitable for
tomorrow’s parallel computer

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

30 Introduction to
Parallelization

First Glance

Most People with IT degree and technology interested
Most programmers develop applications based on university
courses
Parallel programming is scattered
Parallel program beginners work with multicore CPUs, which
is OS-based parallelism

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

31 Introduction to
Parallelization

First Glance

Almost all desktop ship today with either dual or quad-core
processor
multicore processor works using threads

Thread
A thread is a separate execution flow within program that may
diverge and converge as and when required with the main
execution flow.

In the background, we have context switching, which is an
expensive operation

Context Switch
It is a swap in and out of registers. OS has to switch between
tasks every time, in the multicore machine.

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

32 Introduction to
Parallelization

Serial/Parallel Issues

The main issue is sharing the resources between thread
To share resources, we have token.
A thread with token can use the resource, where as other has
to wait to release the token
If there is a single token, there wont be a problem
If there are two tokens, deadlock occur

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

33 Introduction to
Parallelization

Deadlock

Deadlock
If there are two tokens, thread 1 grabs token 1, thread 2 grabs
token 2. Thread 1 now tries to grab token 2, while thread 2 tries
to grab token 1. As neither thread releases the one token they
already own, all threads wait forever. This situation is called
deadlock.
Programmers responsibility to avoid deadlock

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

34 Introduction to
Parallelization

Concurrency

concurrency
It is a property of system in which several computations are
executing simultaneously, and potentially interacting with each
other.
For example, if a problem requires every data point to know about
the value of it surrounding neighbours then the speedup will be
limited. To avoid this bottleneck, throw more processors. But,
computation slows down, because threads spend more time on
sharing data

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

35 Introduction to
Parallelization

Locality

In modern computers, we have multilevel caches (L1, L2, L3).
Caches work on either spatial (close in the address space) or
temporal (close in time).
Temporal locality: Data accessed before, accessed again
Spatial locality: Data close to last accessed data will be
accessed in future

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

36 Introduction to
Parallelization

Understanding Cache

Caches work well if the task is repeated many times
A plumber (RAM)) with a toolbox (L1 cache) which can hold
4 tools.
Useful if he uses the same four tools repeatedly (cache hit)
If an important job requires additional tool, he takes it from
the van (L2 cache)
If he needs a special tool, he needs to leave the job and drive
to local store (global memory)
The last job may require more time
Modern plumber comes with a tool box (L1 cache), van (L2
cache) and truck (L3 cache), where the truck carries more
additional tools.

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

37 Introduction to
Parallelization

Locality...

The programmer must deal with locality at first instance
He/she has to think which memory locations (L1, L2, or L3)
or data structures will be needed
These details need to be collected in a single trip to the
global memory and placed on chip memory

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

38 Introduction to
Parallelization

Amdhal’s Law

Amdhal’s Law
Given:

n ∈ N, the number of threads of execution
fs ∈ [0, 1], the fraction of the algorithm that is serial
fp ∈ [0, 1], the fraction of the algorithm that is parallel
fp = 1− fs

then The time taken to finish when being executed on n threads of
execution corresponds to

T (n) = T (1)(fs +
1
n fp) (1)

The speedup that can be expected

Sn =
1

fs + 1
n fp

(2)

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

39 Introduction to
Parallelization

Amdhal’s Law

Even a small fraction of serial code content is enough to degrade
the parallel performance. For example, even 0.001 is enough to
decrease the speed up by 50% (see Figure)

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

40 Introduction to
Parallelization

Gustafson’s Law

Gustafson’s Law
Effect of multiple processor on run time of a problem with a fixed
amount of parallel work per processor

SP ≤ P − α.(P − 1) (3)

α is the fraction of non-parallelized code where the parallel work
per processor is fixed (not the same as fp from Amdhal’s law
P is the number of processors

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

41 Introduction to
Parallelization

Gustafson’s Law

Amdhal’s law: Strong Scaling
Gusafson’s law: Weak Scaling

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

42 Introduction to
Parallelization

Overhead

Cost of starting process
Cost of communicating shared data
Cost of synchronizing
Extra computation

Tradeoff: Algorithm needs sufficiently large units of work to run
fast in parallel but no so large that there is not enough parallel
work

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

43 Introduction to
Parallelization

Load Imbalance

Load imbalance is the time that some processors are idle due to
insufficient parallelism
unequal task size

Example: Tree structured computations
Algorithm needs to balance load

44

GPU Basics

S. Sundar &
M. Panchatcharam

Introduction

Scientific Simulation

44 Introduction to
ParallelizationTHANK YOU

	Introduction
	Scientific Simulation
	Introduction to Parallelization

