
Advanced Topics in CUDA C

S. Sundar and M. Panchatcharam

August 9, 2014

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 1 / 48

Outline

1 Dot Product in CUDA

2 Atomic Operations

3 Advanced Topics on Memory

4 Multi GPUs

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 2 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 3 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 4 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 5 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 6 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 7 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 8 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 9 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 10 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 11 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 12 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 13 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 14 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 15 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 16 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 17 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 18 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 19 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 20 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 21 / 48

Atomic Operations

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 22 / 48

Atomic Operations

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 23 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 24 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 25 / 48

Dot Product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 26 / 48

Memory Coalescing

Whenever possible:
Read/Write global memory
Only once
Without stride or offset

Use shared memory (150x faster than global)
To coalesce global memory loads/stores
To arrange data in useful patterns
To avoid multiple global memory accesses

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 27 / 48

Thread Diverging

Entire warp executes every branch path taken by any thread in serial
Threads can diverge at any...
if,switch,do,for,while

Gotcha: Diverging threads within a warp are slow

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 28 / 48

Thread Diverging

Create a simple kernel where threads within a warp diverge between two or
more paths
Each path should do some work
Compare to same amount of work done without thread divergence
Use diverge.cu as a template

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 29 / 48

Shared Memory Banks

Shared memory is stored in banks
Successive 32-bit or 64-bit words are stored in successive banks
cudaDeviceGetSharedMemConfig()

cudaDeviceSetSharedMemConfig()

If two threads from a warp access different addresses within a bank, the
requests are serialized
shared memory bank conflict
There are 32 banks, data is distributed cyclicly

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 30 / 48

Memory

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 31 / 48

Memory

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 32 / 48

Bank conflicts

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 33 / 48

Why multi-GPU Programming

Many systems contain multiple GPUs:
Servers (Tesla/Quadro servers and desksides)
Desktops (2- and 3- way SLI desktops, GX2 boards)
Laptops (hybrid SLI)

Additional processing power
Increasing processing throughput

Additional memory
Some problems do not fit within a single GPU memoryl

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 34 / 48

Multi-GPU Memory

GPUs do not share global memory
One GPU cannot access another GPUs memory directly

Inter-GPU communication
Application code is responsible for moving data between GPUs
Data travels across the PCIe bus

Even when GPUs are connected to the same PCIe switch

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 35 / 48

Run-Time API Device Management:

A host thread can maintain one context at a time
GPU is part of the context and cannot be changed once a context is
established
Need as many host threads as GPUs
Note that multiple host threads can establish contexts with the same GPU

Driver handles time-sharing and resource partitioning

GPUs have consecutive integer IDs, starting with 0
Device management calls:

cudaGetDeviceCount(int *num_devices)
cudaSetDevice(int devic_id)
cudaGetDevice(int *current_device_id)
cudaThreadExit()

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 36 / 48

Choosing a Device

Properties for a given device can be queried
No context is necessary or is created
cudaGetDeviceProperties(cudaDeviceProp *properties, int device_id)
This is useful when a system contains different GPUs

Explicit device set:
Select the device for the context by calling cudaSetDevice () with chosen
device ID

Must be called prior to context creation
Fails if a context has already been established
One can force context creation with cudaFree(0)

Default behavior:
Device 0 is chosen when no explicit cudaSetDevice is called

Note this will cause multiple contexts with the same GPU
Except when driver is in the exclusive mode

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 37 / 48

Ensuring One Context Per GPU

Two ways to achieve:
Application-control
Driver-control

Application-control:
Host threads negotiate which GPUs to use

For example,OpenMP threads set device based on OpenMP thread ID
Pitfall: different applications are not aware of each other’s GPU usage

Call cudaSetDevice() with the chosen device ID

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 38 / 48

Driver-Control

To use exclusive mode:
Administrator sets the GPU to exclusive mode using SMI

SMI(System Management Tool) is provided with Linux drivers
Application: do not explicitly set the GPU

Behaviour:
Driver will implicitly set a GPU with no contexts
Implicit context creation will fail if all GPUs have contexts

The first state-changing CUDA call will fail and return an error

Device mode can be checked by querying its properties

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 39 / 48

Inter-GPU Communication

Application is responsible for moving data between GPUs:
Copy data from GPU to host thread A
Copy data from host thread A to host thread B

Use any CPU library (MPI, ...)
Copy data from host thread B to its GPU

Use asynchronous memcopies to overlap kernel execution with data copies
Lightweight host threads (OpenMP,pthreads) can reduce host-side copies by
sharing pinned memory

Allocate with cudaHostAlloc(...)

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 40 / 48

Texture Memory

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 41 / 48

Texture Memory Usage and optimization

Legacy from graphics
Optimized for 2D locality
Performs better than GMEM for random accesses

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 42 / 48

Texture Description

Has a dimensionality
Has elements, called texel/s, of a particular type

Support native types and 2 or 4 component vectors like int4
Has a read mode for indices normalization

cudaReadModeElementType
cudaReadModeNormalizedFloat

Has an addressing mode to deal with out of range (OOR) accesses
cudaAddressModeWrap
cudaAddressModeClamp
cudaAddressModeMirror
cudaAddressModeBorder

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 43 / 48

Texture Description

Filtering Mode
cudaFilterModePoint
cudaFilterLinear

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 44 / 48

Usage

Bind the texture to a linear array
Bind the texture to CUDA array
Opaque container: can only access its content through texture

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 45 / 48

Texture

define N 10000
texture <int ,1 , cudaReadModeElementType > myTexture ;
__global__ void kernel (. . .) {
// Fetch the right index
int a = tex1Dfetch (myTexture , idx);
. . .
}
int main () {
. . .
int *d_V = NULL;
cudaMalloc ((void **)&d_V ,N* sizeof (int));
// Bind the texture to some linear array
cudaBindTexture (0 , myTexture ,d_V ,N* sizeof (int));
kernel <<< blocks , threads >>> (. . .);
// Unbind once done
cudaUnbindTexture (myTexture);
. . .
}

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 46 / 48

Summary

Avoid doing lots of transfer from CPU to GPU
Use shared memory:

for storage of reusable data
for data shared by all the threads in a block
for buffering global memory loads and writes without any bank conflicts

Use registers for reusable data local to a thread
Avoid local memory by limiting the number of registers being used by a kernel
Maximize occupancy to keep the GPU busy
Strive for coalesced accesses to the global memory

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 47 / 48

Use constant memory for read–only reusable data
Make use of alternatives such as LDU or read–only caching when running out
of constant memory, or when you want to use both CMEM and alternatives
at the same time
Use texture memory for random accesses in a kernel without disabling the L1
cache
Use texture memory for data sets with 2D locality

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 48 / 48

THANK YOU

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 49 / 48

	Dot Product in CUDA
	Atomic Operations
	Advanced Topics on Memory
	Multi GPUs

