Advanced Topics in CUDA C J

S. Sundar and M. Panchatcharam

August 9, 2014

S. Sundar and M. Panchatcharam ( IIT Madras, ) Advanced CUDA August 9, 2014 1/48



Outline

@ Dot Product in CUDA

© Atomic Operations

© Advanced Topics on Memory

@ Multi GPUs

S. Sundar and M. Panchatcharam ( IIT Madras, ) Advanced CUDA

August 9, 2014

2/48



Dot Product

Dot Product

* Unlike vector addition, dot product is a reduction from vectors to a scalar
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Dot Product

Dot Product

* Parallel threads have no problem computing the pairwise products:

* Sowe can start a dot product CUDA kernel by doing just that:

global void dot( int int int *c¢ )
// Each thread computes a pairwise product

nt temp = a[threa_dIdx.x}@b[threadldx.x};

S. Sundar and M. Panchatcharam ( IIT Madras, ) Advanced CUDA August 9, 2014

4/

48



Dot Product

Dot Product

* But we need to share data between threads to compute the final sum:

*h, int *c )
utes a pairwise product

althr equdx x] * b[threadldx.x];
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Dot Product

Sharing Data Between Threads

= Terminology: A block of threads shares memory called...shared memory

» Extremely fast, on-chip memory (user-managed cache)

» Declared with the  shared  CUDA keyword

* Not visible to threads in other blocks running in parallel

Block 0 Block 1 Block 2
Threads Threads Threads
¢4l - ' ‘
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Dot Product

Parallel Dot Product: dot ()

» We perform parallel multiplication, serial addition:

tdefine N 512

__global  void dot( int *a, int
// Shared memory for results of multiplication
__shared  int temp[N];
temp[threadldx.x] = a[threadldx.x] * b[threadIdx.x];

f f T e ' BT 4 e S T Lo Tt o N i T a]
Thread 0 sums the pairwise produc

if{ 0 == threadIdx.x {

nt sum = 0;

for( int i = 0; i < N; i+t
sum += temp[il;
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Dot Product

Faulty Dot Product Exposed!

» Step 1: In parallel, each thread writes a pairwise product

_shared dnttemp[ [ [[[J[[TITITI[T]

» Step 2: Thread 0 reads and sums the products

__shared dint temp[ [ [ [ [] [
[ Aol

» But there’s an assumption hidden in Step 1...
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Dot Product

Read-Before-Write Hazard

» Suppose thread 0 finishes its write in step 1
|

ki l “ yyrvy
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* Then thread 0 reads index 12 in step 2
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= {mmmm This read returns garbage!
» Before thread 12 writes to index 12 in step 17
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Dot Product

Synchronization

» We need threads to wait between the sections of dot ():

__global  wvoid dot( int *a, it *b, int *c } {
__shared  int temp[N];
temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x]:

// * NEED THREADS TO SYNCHRONIZE HERE *
// No thread can advance until all threads
// have reached this point in the code
threadldx.x )

£ sum = 0;
for{ int i = 0; i < N; i++ )

sum += temp[i];
= sum;

U su
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Dot Product

__syncthreads ()

* We can synchronize threads with the function  syncthreads ()

* Threads in the block wait until al! threads have hit the  syncthreads()

ThreadQ #————————+ __ syncthreads()

Thread 1 &> _ syncthreads()

Thread 2 4 _ syncthreads ()

Thread 3 __syncthreads()
Thread 4 = __syncthreads ()

* Threads are only synchronized within a block
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Dot Product

Parallel Dot Product: dot ()

__global dot ( *a, *h,
_ shared temp [N];
temp[threadIdx.x] = al[threadldx.x] * bl[threadIdx.x];

__syncthreads();

{ 0 == threadIdx.x ) {
sum = 0;
{ 1=0; 1 <N; i++
sum += temp[i];
*c = sum;

= With a properly synchronized dox () routine, let’s look at main ()

S. Sundar and M. Panchatcharam ( IIT Madras, ) Advanced CUDA August 9, 2014 12 / 48



Dot Produ

Parallel Dot Product: main ()

N 512

cudaM c( (void**)sdev_a, si
cudaMalloc( | i**) ¢dev b, size };

cudaMalloc( (void**)s&dev_c, sizeof( int ) };

random_ints( a, N };

random_ints( b, N );
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Dot Produ

Parallel Dot Product: main ()

cudallemc 21 lostToDevice )

cudalem: b, b, si pyHostToDevice )

/ copy de

cudaMem 2 v C, o8 ( ) cudaMemcpyDeviceToHos

free( a
cudaFree (
cudaFree (

cudaFree (
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Dot Product

Multiblock Dot Product

» Recall our dot product launch:
// launch dot () kernel with I block

dot<<< 1, N >>>( dev a, dev b, dev |

» Launching with one block will not utilize much of the GPU

» Let’s write a multiblock version of dot product
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Dot Product

Multiblock Dot Product: Algorithm

» Each block computes a sum of its pairwise products like before:

Block 0
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Dot Product

Multiblock Dot Product: Algorithm

» And then contributes its sum to the final result:

Block 0
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Dot Product

Multiblock Dot Product: dot ()

#define N (2048%2048)
fdefine THREADS PER BLOCK 512
__global  veid dot{ int *a, int *b, int *c )
shared temp [THREADS PER BLOCK];
int index - threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads (] ;

if( 0 == threadIdx.x ) {
sum = 0;
(int i =0; i<« THREADS FER BLOCK; i++
sum += temp[i];
dcomEcAdf c , sum );

1

» But we have a race condition...

» We can fix it with one of CUDA’s atomic operations
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Dot Product

Race Conditions

* Terminology: A race condition occurs when program behavior depends upon
relative timing of two (or more) event sequences

* What actually takes place to execute the line in question: *c += sum;
— Read value at address ¢

— Add sum to value Terminology: Read-Modify-Write
— Write result to address ¢

* What if two threads are trying to do this at the same time?
* Thread 0, Block 0 * Thread 0, Block 1
— Read value at address ¢ — Read value at address ¢
— Add sum to value — Add sum to value
— Write result to address ¢ — Write result to address ¢
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Dot Product

Global Memory Contention

Read-Modify-Write
)

[ |

Block 0 Reads 0 Computes0+3  Writes 3
sum = 3 0+3 = 3 3
3

|

clo] [0

\;‘
) 3t4 = 17 7
Reads 3 Computes 3+4 Writes 7

I

Read-Modify-Write

S. Sundar and M. Panchatcharam ( IIT Madras, ) Advanced CUDA August 9, 2014 20 / 48



Dot Product

Global Memory Contention
Read-M(leify-Write

Block 0 Reads 0 Computes 0+3 Writes 3
sum = 3 0 043 =3

|

9]

] 0+4 = 4
Reads 0 Computes 0+4
1

Read-Modirv-Wr‘ite
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Atomic Operations

Atomic Operations

» Terminology: Read-modify-write uninterruptible when atomic

* Many atomic operations on memory available with CUDA C

* atomicAdd * atomicIne ()

s atomicSub *» gtomicDec ()

* atomicMin s atomicExch()

()
()
()
()

* atomicMax * atomicCAS ()

* Predictable result when simultaneous access to memory required

* We need to atomically add sum to c in our multiblock dot product
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Dot Product

Multiblock Dot Product: dot ()

__global _ void dot( int *a, int *b, L * ) {
__shared  int temp[THREADS PER BLOCK];
£ index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads();

if( 0 == threadIdx.x ) {
sum = 0;
(int 1 =10; 1< THREADS _PER BLOCK; i+t )
sum += temp[i];
atomicAdd({ ¢ , sum );

* Now let’s fix up main () to handle a multiblock dot product
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Dot Produ

Parallel Dot Product:

aMalloc(

*)malloc( size
*ymalloc|
*ymalloc|

random int
random i
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Dot Produc

Parallel Dot Product: main ()

“opy inpu
cudaMemcpy( dev_a, si cudaMemcpyHostToDevice )}

cudaMemcpy( dev_b, b, si cudaMemcpyHostToDev

cudaFree( dev_
cudaFree( dev_b };
cudaFree( dev_
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Memory Coalescing

Whenever possible:

e Read/Write global memory
e Only once
o Without stride or offset

@ Use shared memory (150x faster than global)

To coalesce global memory loads/stores

@ To arrange data in useful patterns

To avoid multiple global memory accesses
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Thread Diverging

@ Entire warp executes every branch path taken by any thread in serial

@ Threads can diverge at any...

if,switch,do,for,while

@ Gotcha: Diverging threads within a warp are slow
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Thread Diverging

@ Create a simple kernel where threads within a warp diverge between two or
more paths

Each path should do some work

@ Compare to same amount of work done without thread divergence

Use diverge.cu as a template
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Shared Memory Banks

Shared memory is stored in banks

Successive 32-bit or 64-bit words are stored in successive banks
cudaDeviceGetSharedMemConfig ()
cudaDeviceSetSharedMemConfig()

If two threads from a warp access different addresses within a bank, the
requests are serialized

shared memory bank conflict

There are 32 banks, data is distributed cyclicly
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Memory

Which access pattern minimizes
shared memory bank conflicts?

|

/ B)
=

A

N

Interleaved

Sequential

C) Neither produces bank conflicts
D) Both produce equal numbers of bank conflicts




Memory

To simplify diagrams: assume 4 banks, 4 threads per warp
Normally: 32 banks, 32 threads per warp

Bank Thread 1, Thread 2, Thread 3, Thread 4
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Bank conflicts

Bank Conflicts

cache cache cache

Interleaved — —

access, —/ |

bank conflicts - -

|
[T

Sequential - | - ||
access,
no bank conflicts| |
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Why multi-GPU Programming

@ Many systems contain multiple GPUs:
o Servers (Tesla/Quadro servers and desksides)
o Desktops (2- and 3- way SLI desktops, GX2 boards)
e Laptops (hybrid SLI)
o Additional processing power
o Increasing processing throughput
o Additional memory
e Some problems do not fit within a single GPU memoryl
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Multi-GPU Memory

@ GPUs do not share global memory
@ One GPU cannot access another GPUs memory directly
@ Inter-GPU communication

o Application code is responsible for moving data between GPUs
e Data travels across the PCle bus

@ Even when GPUs are connected to the same PCle switch
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Run-Time APl Device Management:

@ A host thread can maintain one context at a time
e GPU is part of the context and cannot be changed once a context is
established

o Need as many host threads as GPUs
o Note that multiple host threads can establish contexts with the same GPU

@ Driver handles time-sharing and resource partitioning
@ GPUs have consecutive integer IDs, starting with 0

@ Device management calls:

cudaGetDeviceCount( int ¥*num_devices )
cudaSetDevice( int devic_id )
cudaGetDevice( int *current_device_id )
cudaThreadExit( )
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Choosing a Device

@ Properties for a given device can be queried
o No context is necessary or is created
o cudaGetDeviceProperties(cudaDeviceProp *properties, int device_id)
e This is useful when a system contains different GPUs

@ Explicit device set:

o Select the device for the context by calling cudaSetDevice () with chosen
device ID

@ Must be called prior to context creation
o Fails if a context has already been established
@ One can force context creation with cudaFree(0)
@ Default behavior:
e Device 0 is chosen when no explicit cudaSetDevice is called

@ Note this will cause multiple contexts with the same GPU
@ Except when driver is in the exclusive mode
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Ensuring One Context Per GPU

@ Two ways to achieve:
e Application-control
o Driver-control
@ Application-control:
o Host threads negotiate which GPUs to use

@ For example,OpenMP threads set device based on OpenMP thread ID
o Pitfall: different applications are not aware of each other's GPU usage

o Call cudaSetDevice() with the chosen device ID
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Driver-Control

@ To use exclusive mode:
o Administrator sets the GPU to exclusive mode using SMI
@ SMI(System Management Tool) is provided with Linux drivers

o Application: do not explicitly set the GPU
@ Behaviour:

o Driver will implicitly set a GPU with no contexts
o Implicit context creation will fail if all GPUs have contexts

@ The first state-changing CUDA call will fail and return an error

@ Device mode can be checked by querying its properties
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Inter-GPU Communication

@ Application is responsible for moving data between GPUs:

o Copy data from GPU to host thread A
o Copy data from host thread A to host thread B

@ Use any CPU library (MPI, ...)
o Copy data from host thread B to its GPU
@ Use asynchronous memcopies to overlap kernel execution with data copies

o Lightweight host threads (OpenMP,pthreads ) can reduce host-side copies by
sharing pinned memory

o Allocate with cudaHostAlloc(...)
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Texture Memory Usage and optimization

@ Legacy from graphics
@ Optimized for 2D locality

@ Performs better than GMEM for random accesses
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Texture Description

Has a dimensionality

Has elements, called texel/s, of a particular type
e Support native types and 2 or 4 component vectors like int4
@ Has a read mode for indices normalization
o cudaReadModeElementType
o cudaReadModeNormalizedFloat
@ Has an addressing mode to deal with out of range (OOR) accesses

cudaAddressModeWrap

cudaAddressModeClamp
cudaAddressModeMirror
cudaAddressModeBorder
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Texture Description

o Filtering Mode

o cudaFilterModePoint
o cudaFilterLinear
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Usage

@ Bind the texture to a linear array

e Bind the texture to CUDA array
o Opaque container: can only access its content through texture
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Texture

#define N 10000

texture <int,1 , cudaReadModeElementType> myTexture;
__global__ void kermel ( . . . ) {

//Fetch the right indez

int a = tex1Dfetch( myTexture , idx );

}
int main () {

int *d_V = NULL;

cudaMalloc ((void**)&d_V ,N*sizeof (int));

//Bind the texzture to some linear array
cudaBindTexture (0 , myTexture ,d_V,N*sizeof (int));
kernel <<< blocks , threads >>> ( . . . );

//Unbind once done
cudaUnbindTexture (myTexture) ;

}
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Summary

Avoid doing lots of transfer from CPU to GPU
Use shared memory:

o for storage of reusable data
o for data shared by all the threads in a block
o for buffering global memory loads and writes without any bank conflicts

Use registers for reusable data local to a thread

Avoid local memory by limiting the number of registers being used by a kernel

@ Maximize occupancy to keep the GPU busy

Strive for coalesced accesses to the global memory
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@ Use constant memory for read—only reusable data

@ Make use of alternatives such as LDU or read—only caching when running out
of constant memory, or when you want to use both CMEM and alternatives
at the same time

@ Use texture memory for random accesses in a kernel without disabling the L1
cache

@ Use texture memory for data sets with 2D locality
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