Advanced Topics in CUDA C J

S. Sundar and M. Panchatcharam

August 9, 2014

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 1/48

Outline

@ Dot Product in CUDA

© Atomic Operations

© Advanced Topics on Memory

@ Multi GPUs

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA

August 9, 2014

2/48

Dot Product

Dot Product

* Unlike vector addition, dot product is a reduction from vectors to a scalar

a b
T { by~
ﬂ] —| b]

) —*—ﬂ);

a5 —F—{b; -

- o

a-b
= (a(}: a1: az:) (bU: b1J bl: b)

ay by +a;by +a,b, +a;by

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

3/

48

Dot Product

Dot Product

* Parallel threads have no problem computing the pairwise products:

* Sowe can start a dot product CUDA kernel by doing just that:

global void dot(int int int *c¢)
// Each thread computes a pairwise product

nt temp = a[threa_dIdx.x}@b[threadldx.x};

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

4/

48

Dot Product

Dot Product

* But we need to share data between threads to compute the final sum:

*h, int *c)
utes a pairwise product

althr equdx x] * b[threadldx.x];

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

5

/ 48

Dot Product

Sharing Data Between Threads

= Terminology: A block of threads shares memory called...shared memory

» Extremely fast, on-chip memory (user-managed cache)

» Declared with the shared CUDA keyword

* Not visible to threads in other blocks running in parallel

Block 0 Block 1 Block 2
Threads Threads Threads
¢4l - ' ‘

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 6/

48

Dot Product

Parallel Dot Product: dot ()

» We perform parallel multiplication, serial addition:

tdefine N 512

__global void dot(int *a, int
// Shared memory for results of multiplication
__shared int temp[N];
temp[threadldx.x] = a[threadldx.x] * b[threadIdx.x];

f f T e ' BT 4 e S T Lo Tt o N i T a]
Thread 0 sums the pairwise produc

if{ 0 == threadIdx.x {

nt sum = 0;

for(int i = 0; i < N; i+t
sum += temp[il;

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 7 /48

Dot Product

Faulty Dot Product Exposed!

» Step 1: In parallel, each thread writes a pairwise product

_shared dnttemp[[[[[J[[TITITI[T]

» Step 2: Thread 0 reads and sums the products

__shared dint temp[[[[[] [
[Aol

» But there’s an assumption hidden in Step 1...

S. Sundar and M. Panchatcharam (IIT Madras,) Advance: d CUDA

Dot Product

Read-Before-Write Hazard

» Suppose thread 0 finishes its write in step 1
|

ki l “ yyrvy
VIVIVIVIVIVIVIVIX[XX[X[X]X[X]¥]
* Then thread 0 reads index 12 in step 2

l\\lv‘éiv

JIJI\II\II\II\II\II\II [X[X[x[x[x[x]x]

= {mmmm This read returns garbage!
» Before thread 12 writes to index 12 in step 17

11111

VVVVVVVVVIVIVIVIVIVIVIV]

dar and M. Panchatcharam (IIT Madras,) Advance d CUDA

Dot Product

Synchronization

» We need threads to wait between the sections of dot ():

__global wvoid dot(int *a, it *b, int *c } {
__shared int temp[N];
temp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x]:

// * NEED THREADS TO SYNCHRONIZE HERE *
// No thread can advance until all threads
// have reached this point in the code
threadldx.x)

£ sum = 0;
for{ int i = 0; i < N; i++)

sum += temp[i];
= sum;

U su

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

10 / 48

Dot Product

__syncthreads ()

* We can synchronize threads with the function syncthreads ()

* Threads in the block wait until al! threads have hit the syncthreads()

ThreadQ #————————+ __ syncthreads()

Thread 1 &> _ syncthreads()

Thread 2 4 _ syncthreads ()

Thread 3 __syncthreads()
Thread 4 = __syncthreads ()

* Threads are only synchronized within a block

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

Dot Product

Parallel Dot Product: dot ()

__global dot (*a, *h,
_ shared temp [N];
temp[threadIdx.x] = al[threadldx.x] * bl[threadIdx.x];

__syncthreads();

{ 0 == threadIdx.x) {
sum = 0;
{ 1=0; 1 <N; i++
sum += temp[i];
*c = sum;

= With a properly synchronized dox () routine, let’s look at main ()

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 12 / 48

Dot Produ

Parallel Dot Product: main ()

N 512

cudaM c((void**)sdev_a, si
cudaMalloc(| i**) ¢dev b, size };

cudaMalloc((void**)s&dev_c, sizeof(int) };

random_ints(a, N };

random_ints(b, N);

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 13 /48

Dot Produ

Parallel Dot Product: main ()

cudallemc 21 lostToDevice)

cudalem: b, b, si pyHostToDevice)

/ copy de

cudaMem 2 v C, o8 () cudaMemcpyDeviceToHos

free(a
cudaFree (
cudaFree (

cudaFree (

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 14 / 48

Dot Product

Multiblock Dot Product

» Recall our dot product launch:
// launch dot () kernel with I block

dot<<< 1, N >>>(dev a, dev b, dev |

» Launching with one block will not utilize much of the GPU

» Let’s write a multiblock version of dot product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

15 / 48

Dot Product

Multiblock Dot Product: Algorithm

» Each block computes a sum of its pairwise products like before:

Block 0

a b

N
L i NP T,
{2y —8— by —— +)—f

8 —&—b—

ay by

Block 1
a b

a5 —B— bap

gy AR S oy
%13 — 5 bspy |
By B bau [~

Bps —H— bss [
. H

August 9, 2014 16 / 48

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA

Dot Product

Multiblock Dot Product: Algorithm

» And then contributes its sum to the final result:

Block 0
a b
ag B by —
iy —B— by —
3y —®— b —

a,—&—b,|—

Block 1
a b
s by
3 by
Bgpq [by ——
L A bzw

August 9, 2014 17 / 48

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA

Dot Product

Multiblock Dot Product: dot ()

#define N (2048%2048)
fdefine THREADS PER BLOCK 512
__global veid dot{ int *a, int *b, int *c)
shared temp [THREADS PER BLOCK];
int index - threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads (] ;

if(0 == threadIdx.x) {
sum = 0;
(int i =0; i<« THREADS FER BLOCK; i++
sum += temp[i];
dcomEcAdf c , sum);

1

» But we have a race condition...

» We can fix it with one of CUDA’s atomic operations

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA

August 9, 2014

Dot Product

Race Conditions

* Terminology: A race condition occurs when program behavior depends upon
relative timing of two (or more) event sequences

* What actually takes place to execute the line in question: *c += sum;
— Read value at address ¢

— Add sum to value Terminology: Read-Modify-Write
— Write result to address ¢

* What if two threads are trying to do this at the same time?
* Thread 0, Block 0 * Thread 0, Block 1
— Read value at address ¢ — Read value at address ¢
— Add sum to value — Add sum to value
— Write result to address ¢ — Write result to address ¢

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 19/

Dot Product

Global Memory Contention

Read-Modify-Write
)

[|

Block 0 Reads 0 Computes0+3 Writes 3
sum = 3 0+3 = 3 3
3

|

clo] [0

\;‘
) 3t4 = 17 7
Reads 3 Computes 3+4 Writes 7

I

Read-Modify-Write

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 20 / 48

Dot Product

Global Memory Contention
Read-M(leify-Write

Block 0 Reads 0 Computes 0+3 Writes 3
sum = 3 0 043 =3

|

9]

] 0+4 = 4
Reads 0 Computes 0+4
1

Read-Modirv-Wr‘ite

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 22 /48

Atomic Operations

Atomic Operations

» Terminology: Read-modify-write uninterruptible when atomic

* Many atomic operations on memory available with CUDA C

* atomicAdd * atomicIne ()

s atomicSub *» gtomicDec ()

* atomicMin s atomicExch()

()
()
()
()

* atomicMax * atomicCAS ()

* Predictable result when simultaneous access to memory required

* We need to atomically add sum to c in our multiblock dot product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

23/

48

Dot Product

Multiblock Dot Product: dot ()

__global _ void dot(int *a, int *b, L *) {
__shared int temp[THREADS PER BLOCK];
£ index = threadIdx.x + blockIdx.x * blockDim.x;
temp[threadIdx.x] = a[index] * b[index];

__syncthreads();

if(0 == threadIdx.x) {
sum = 0;
(int 1 =10; 1< THREADS _PER BLOCK; i+t)
sum += temp[i];
atomicAdd({ ¢ , sum);

* Now let’s fix up main () to handle a multiblock dot product

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

24 / 48

Dot Produ

Parallel Dot Product:

aMalloc(

*)malloc(size
*ymalloc|
*ymalloc|

random int
random i

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 25/

Dot Produc

Parallel Dot Product: main ()

“opy inpu
cudaMemcpy(dev_a, si cudaMemcpyHostToDevice)}

cudaMemcpy(dev_b, b, si cudaMemcpyHostToDev

cudaFree(dev_
cudaFree(dev_b };
cudaFree(dev_

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

Memory Coalescing

Whenever possible:

e Read/Write global memory
e Only once
o Without stride or offset

@ Use shared memory (150x faster than global)

To coalesce global memory loads/stores

@ To arrange data in useful patterns

To avoid multiple global memory accesses

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 27 / 48

Thread Diverging

@ Entire warp executes every branch path taken by any thread in serial

@ Threads can diverge at any...

if,switch,do,for,while

@ Gotcha: Diverging threads within a warp are slow

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 28 /48

Thread Diverging

@ Create a simple kernel where threads within a warp diverge between two or
more paths

Each path should do some work

@ Compare to same amount of work done without thread divergence

Use diverge.cu as a template

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 29 /48

Shared Memory Banks

Shared memory is stored in banks

Successive 32-bit or 64-bit words are stored in successive banks
cudaDeviceGetSharedMemConfig ()
cudaDeviceSetSharedMemConfig()

If two threads from a warp access different addresses within a bank, the
requests are serialized

shared memory bank conflict

There are 32 banks, data is distributed cyclicly

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

30 /48

Memory

Which access pattern minimizes
shared memory bank conflicts?

|

/ B)
=

A

N

Interleaved

Sequential

C) Neither produces bank conflicts
D) Both produce equal numbers of bank conflicts

Memory

To simplify diagrams: assume 4 banks, 4 threads per warp
Normally: 32 banks, 32 threads per warp

Bank Thread 1, Thread 2, Thread 3, Thread 4

. 7/*/7 y Conflicts: 182, 384
2

0 - .

2 H—1 - —

3 __/__ _J -

‘1] - ——" || Conflicts: None
2f | | N

3 - | -] —

0 —§ —§ | —

d —] -

2 —1 = |

3

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 32 /48

Bank conflicts

Bank Conflicts

cache cache cache

Interleaved — —

access, —/ |

bank conflicts - -

|
[T

Sequential - | - ||
access,
no bank conflicts| |

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 33 /48

Why multi-GPU Programming

@ Many systems contain multiple GPUs:
o Servers (Tesla/Quadro servers and desksides)
o Desktops (2- and 3- way SLI desktops, GX2 boards)
e Laptops (hybrid SLI)
o Additional processing power
o Increasing processing throughput
o Additional memory
e Some problems do not fit within a single GPU memoryl

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 34 /48

Multi-GPU Memory

@ GPUs do not share global memory
@ One GPU cannot access another GPUs memory directly
@ Inter-GPU communication

o Application code is responsible for moving data between GPUs
e Data travels across the PCle bus

@ Even when GPUs are connected to the same PCle switch

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 35 /48

Run-Time APl Device Management:

@ A host thread can maintain one context at a time
e GPU is part of the context and cannot be changed once a context is
established

o Need as many host threads as GPUs
o Note that multiple host threads can establish contexts with the same GPU

@ Driver handles time-sharing and resource partitioning
@ GPUs have consecutive integer IDs, starting with 0

@ Device management calls:

cudaGetDeviceCount(int ¥*num_devices)
cudaSetDevice(int devic_id)
cudaGetDevice(int *current_device_id)
cudaThreadExit()

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 36 /48

Choosing a Device

@ Properties for a given device can be queried
o No context is necessary or is created
o cudaGetDeviceProperties(cudaDeviceProp *properties, int device_id)
e This is useful when a system contains different GPUs

@ Explicit device set:

o Select the device for the context by calling cudaSetDevice () with chosen
device ID

@ Must be called prior to context creation
o Fails if a context has already been established
@ One can force context creation with cudaFree(0)
@ Default behavior:
e Device 0 is chosen when no explicit cudaSetDevice is called

@ Note this will cause multiple contexts with the same GPU
@ Except when driver is in the exclusive mode

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 37 /48

Ensuring One Context Per GPU

@ Two ways to achieve:
e Application-control
o Driver-control
@ Application-control:
o Host threads negotiate which GPUs to use

@ For example,OpenMP threads set device based on OpenMP thread ID
o Pitfall: different applications are not aware of each other's GPU usage

o Call cudaSetDevice() with the chosen device ID

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 38 /48

Driver-Control

@ To use exclusive mode:
o Administrator sets the GPU to exclusive mode using SMI
@ SMI(System Management Tool) is provided with Linux drivers

o Application: do not explicitly set the GPU
@ Behaviour:

o Driver will implicitly set a GPU with no contexts
o Implicit context creation will fail if all GPUs have contexts

@ The first state-changing CUDA call will fail and return an error

@ Device mode can be checked by querying its properties

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 39 /48

Inter-GPU Communication

@ Application is responsible for moving data between GPUs:

o Copy data from GPU to host thread A
o Copy data from host thread A to host thread B

@ Use any CPU library (MPI, ...)
o Copy data from host thread B to its GPU
@ Use asynchronous memcopies to overlap kernel execution with data copies

o Lightweight host threads (OpenMP,pthreads) can reduce host-side copies by
sharing pinned memory

o Allocate with cudaHostAlloc(...)

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 40 / 48

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 41 /48

Texture Memory Usage and optimization

@ Legacy from graphics
@ Optimized for 2D locality

@ Performs better than GMEM for random accesses

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 42 /48

Texture Description

Has a dimensionality

Has elements, called texel/s, of a particular type
e Support native types and 2 or 4 component vectors like int4
@ Has a read mode for indices normalization
o cudaReadModeElementType
o cudaReadModeNormalizedFloat
@ Has an addressing mode to deal with out of range (OOR) accesses

cudaAddressModeWrap

cudaAddressModeClamp
cudaAddressModeMirror
cudaAddressModeBorder

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 43 /48

Texture Description

o Filtering Mode

o cudaFilterModePoint
o cudaFilterLinear

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 44 / 48

Usage

@ Bind the texture to a linear array

e Bind the texture to CUDA array
o Opaque container: can only access its content through texture

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 45 / 48

Texture

#define N 10000

texture <int,1 , cudaReadModeElementType> myTexture;
__global__ void kermel (. . .) {

//Fetch the right indez

int a = tex1Dfetch(myTexture , idx);

}
int main () {

int *d_V = NULL;

cudaMalloc ((void**)&d_V ,N*sizeof (int));

//Bind the texzture to some linear array
cudaBindTexture (0 , myTexture ,d_V,N*sizeof (int));
kernel <<< blocks , threads >>> (. . .);

//Unbind once done
cudaUnbindTexture (myTexture) ;

}

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014

46 / 48

Summary

Avoid doing lots of transfer from CPU to GPU
Use shared memory:

o for storage of reusable data
o for data shared by all the threads in a block
o for buffering global memory loads and writes without any bank conflicts

Use registers for reusable data local to a thread

Avoid local memory by limiting the number of registers being used by a kernel

@ Maximize occupancy to keep the GPU busy

Strive for coalesced accesses to the global memory

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 47 / 48

@ Use constant memory for read—only reusable data

@ Make use of alternatives such as LDU or read—only caching when running out
of constant memory, or when you want to use both CMEM and alternatives
at the same time

@ Use texture memory for random accesses in a kernel without disabling the L1
cache

@ Use texture memory for data sets with 2D locality

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 48 / 48

S. Sundar and M. Panchatcharam (IIT Madras,) Advanced CUDA August 9, 2014 49 / 48

	Dot Product in CUDA
	Atomic Operations
	Advanced Topics on Memory
	Multi GPUs

